A dichotomy on Schreier sets
Studia Mathematica, Tome 132 (1999) no. 3, pp. 245-256

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the Schreier sets $S_α(α ω_1)$ have the following dichotomy property. For every hereditary collection ℱ of finite subsets of ℱ, either there exists infinite $M = (m_i)_{i=1}^∞ ⊆ ℕ$ such that $S_α(M)={{m_i:i ∈ E}: E ∈ S_α} ⊆ ℱ$, or there exist infinite $M = (m_i)_{i=1}^∞, N ⊆ ℕ$ such that $ℱ[N](M) = {{m_i:i ∈ F}:F ∈ ℱ and F ⊂ N } ⊆ S_α$.
DOI : 10.4064/sm-132-3-245-256

Robert Judd 1

1
@article{10_4064_sm_132_3_245_256,
     author = {Robert Judd},
     title = {A dichotomy on {Schreier} sets},
     journal = {Studia Mathematica},
     pages = {245--256},
     publisher = {mathdoc},
     volume = {132},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-132-3-245-256},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-245-256/}
}
TY  - JOUR
AU  - Robert Judd
TI  - A dichotomy on Schreier sets
JO  - Studia Mathematica
PY  - 1999
SP  - 245
EP  - 256
VL  - 132
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-245-256/
DO  - 10.4064/sm-132-3-245-256
LA  - de
ID  - 10_4064_sm_132_3_245_256
ER  - 
%0 Journal Article
%A Robert Judd
%T A dichotomy on Schreier sets
%J Studia Mathematica
%D 1999
%P 245-256
%V 132
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-245-256/
%R 10.4064/sm-132-3-245-256
%G de
%F 10_4064_sm_132_3_245_256
Robert Judd. A dichotomy on Schreier sets. Studia Mathematica, Tome 132 (1999) no. 3, pp. 245-256. doi: 10.4064/sm-132-3-245-256

Cité par Sources :