Transitivity for linear operators on a Banach space
Studia Mathematica, Tome 132 (1999) no. 3, pp. 239-243

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if $x_1,…,x_n$ and $y_1,…,y_n$ are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that $T(x_k) = y_k$, $k = 1,…,n$. We prove that some proper multiplicative subgroups of G have this property.
DOI : 10.4064/sm-132-3-239-243

Bertram Yood 1

1
@article{10_4064_sm_132_3_239_243,
     author = {Bertram Yood},
     title = {Transitivity for linear operators on a {Banach} space},
     journal = {Studia Mathematica},
     pages = {239--243},
     publisher = {mathdoc},
     volume = {132},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-132-3-239-243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-239-243/}
}
TY  - JOUR
AU  - Bertram Yood
TI  - Transitivity for linear operators on a Banach space
JO  - Studia Mathematica
PY  - 1999
SP  - 239
EP  - 243
VL  - 132
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-239-243/
DO  - 10.4064/sm-132-3-239-243
LA  - en
ID  - 10_4064_sm_132_3_239_243
ER  - 
%0 Journal Article
%A Bertram Yood
%T Transitivity for linear operators on a Banach space
%J Studia Mathematica
%D 1999
%P 239-243
%V 132
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-239-243/
%R 10.4064/sm-132-3-239-243
%G en
%F 10_4064_sm_132_3_239_243
Bertram Yood. Transitivity for linear operators on a Banach space. Studia Mathematica, Tome 132 (1999) no. 3, pp. 239-243. doi: 10.4064/sm-132-3-239-243

Cité par Sources :