Transitivity for linear operators on a Banach space
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 132 (1999) no. 3, pp. 239-243
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if $x_1,…,x_n$ and $y_1,…,y_n$ are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that $T(x_k) = y_k$, $k = 1,…,n$. We prove that some proper multiplicative subgroups of G have this property.
            
            
            
          
        
      @article{10_4064_sm_132_3_239_243,
     author = {Bertram Yood},
     title = {Transitivity for linear operators on a {Banach} space},
     journal = {Studia Mathematica},
     pages = {239--243},
     publisher = {mathdoc},
     volume = {132},
     number = {3},
     year = {1999},
     doi = {10.4064/sm-132-3-239-243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-239-243/}
}
                      
                      
                    TY - JOUR AU - Bertram Yood TI - Transitivity for linear operators on a Banach space JO - Studia Mathematica PY - 1999 SP - 239 EP - 243 VL - 132 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-239-243/ DO - 10.4064/sm-132-3-239-243 LA - en ID - 10_4064_sm_132_3_239_243 ER -
Bertram Yood. Transitivity for linear operators on a Banach space. Studia Mathematica, Tome 132 (1999) no. 3, pp. 239-243. doi: 10.4064/sm-132-3-239-243
Cité par Sources :
