Transitivity for linear operators on a Banach space
Studia Mathematica, Tome 132 (1999) no. 3, pp. 239-243
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if $x_1,…,x_n$ and $y_1,…,y_n$ are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that $T(x_k) = y_k$, $k = 1,…,n$. We prove that some proper multiplicative subgroups of G have this property.
@article{10_4064_sm_132_3_239_243,
author = {Bertram Yood},
title = {Transitivity for linear operators on a {Banach} space},
journal = {Studia Mathematica},
pages = {239--243},
year = {1999},
volume = {132},
number = {3},
doi = {10.4064/sm-132-3-239-243},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-239-243/}
}
Bertram Yood. Transitivity for linear operators on a Banach space. Studia Mathematica, Tome 132 (1999) no. 3, pp. 239-243. doi: 10.4064/sm-132-3-239-243
Cité par Sources :