A general geometric construction for affine surface area
Studia Mathematica, Tome 132 (1999) no. 3, pp. 227-238
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let K be a convex body in $ℝ^n$ and B be the Euclidean unit ball in $ℝ^n$. We show that $lim_{t→ 0} (|K| -|K_t|)/(|B| - |B_t|) = as(K)/as(B)$, where as(K) respectively as(B) is the affine surface area of K respectively B and ${K_t}_{t≥0}$, ${B_t}_{t≥0}$ are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].
@article{10_4064_sm_132_3_227_238,
author = {Elisabeth Werner},
title = {A general geometric construction for affine surface area},
journal = {Studia Mathematica},
pages = {227--238},
year = {1999},
volume = {132},
number = {3},
doi = {10.4064/sm-132-3-227-238},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-227-238/}
}
TY - JOUR AU - Elisabeth Werner TI - A general geometric construction for affine surface area JO - Studia Mathematica PY - 1999 SP - 227 EP - 238 VL - 132 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-227-238/ DO - 10.4064/sm-132-3-227-238 LA - en ID - 10_4064_sm_132_3_227_238 ER -
Elisabeth Werner. A general geometric construction for affine surface area. Studia Mathematica, Tome 132 (1999) no. 3, pp. 227-238. doi: 10.4064/sm-132-3-227-238
Cité par Sources :