A general geometric construction for affine surface area
Studia Mathematica, Tome 132 (1999) no. 3, pp. 227-238 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let K be a convex body in $ℝ^n$ and B be the Euclidean unit ball in $ℝ^n$. We show that $lim_{t→ 0} (|K| -|K_t|)/(|B| - |B_t|) = as(K)/as(B)$, where as(K) respectively as(B) is the affine surface area of K respectively B and ${K_t}_{t≥0}$, ${B_t}_{t≥0}$ are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].
@article{10_4064_sm_132_3_227_238,
     author = {Elisabeth Werner},
     title = {A general geometric construction for affine surface area},
     journal = {Studia Mathematica},
     pages = {227--238},
     year = {1999},
     volume = {132},
     number = {3},
     doi = {10.4064/sm-132-3-227-238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-227-238/}
}
TY  - JOUR
AU  - Elisabeth Werner
TI  - A general geometric construction for affine surface area
JO  - Studia Mathematica
PY  - 1999
SP  - 227
EP  - 238
VL  - 132
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-227-238/
DO  - 10.4064/sm-132-3-227-238
LA  - en
ID  - 10_4064_sm_132_3_227_238
ER  - 
%0 Journal Article
%A Elisabeth Werner
%T A general geometric construction for affine surface area
%J Studia Mathematica
%D 1999
%P 227-238
%V 132
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-3-227-238/
%R 10.4064/sm-132-3-227-238
%G en
%F 10_4064_sm_132_3_227_238
Elisabeth Werner. A general geometric construction for affine surface area. Studia Mathematica, Tome 132 (1999) no. 3, pp. 227-238. doi: 10.4064/sm-132-3-227-238

Cité par Sources :