$L^p$-improving properties of measures supported on curves on the Heisenberg group
Studia Mathematica, Tome 132 (1999) no. 2, pp. 179-201
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
$L^p$-$L^q$ boundedness properties are obtained for operators defined by convolution with measures supported on certain curves on the Heisenberg group. We find the curvature condition for which the type set of these operators can be the full optimal trapezoid with vertices A=(0,0), B=(1,1), C=(2/3,1/2), D=(1/2,1/3). We also give notions of right curvature and left curvature which are not mutually equivalent.
@article{10_4064_sm_132_2_179_201,
author = {Silvia Secco},
title = {$L^p$-improving properties of measures supported on curves on the {Heisenberg} group},
journal = {Studia Mathematica},
pages = {179--201},
publisher = {mathdoc},
volume = {132},
number = {2},
year = {1999},
doi = {10.4064/sm-132-2-179-201},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-179-201/}
}
TY - JOUR AU - Silvia Secco TI - $L^p$-improving properties of measures supported on curves on the Heisenberg group JO - Studia Mathematica PY - 1999 SP - 179 EP - 201 VL - 132 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-179-201/ DO - 10.4064/sm-132-2-179-201 LA - en ID - 10_4064_sm_132_2_179_201 ER -
%0 Journal Article %A Silvia Secco %T $L^p$-improving properties of measures supported on curves on the Heisenberg group %J Studia Mathematica %D 1999 %P 179-201 %V 132 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-179-201/ %R 10.4064/sm-132-2-179-201 %G en %F 10_4064_sm_132_2_179_201
Silvia Secco. $L^p$-improving properties of measures supported on curves on the Heisenberg group. Studia Mathematica, Tome 132 (1999) no. 2, pp. 179-201. doi: 10.4064/sm-132-2-179-201
Cité par Sources :