$L^p$-improving properties of measures supported on curves on the Heisenberg group
Studia Mathematica, Tome 132 (1999) no. 2, pp. 179-201

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

$L^p$-$L^q$ boundedness properties are obtained for operators defined by convolution with measures supported on certain curves on the Heisenberg group. We find the curvature condition for which the type set of these operators can be the full optimal trapezoid with vertices A=(0,0), B=(1,1), C=(2/3,1/2), D=(1/2,1/3). We also give notions of right curvature and left curvature which are not mutually equivalent.
DOI : 10.4064/sm-132-2-179-201

Silvia Secco 1

1
@article{10_4064_sm_132_2_179_201,
     author = {Silvia Secco},
     title = {$L^p$-improving properties of measures supported on curves on the {Heisenberg} group},
     journal = {Studia Mathematica},
     pages = {179--201},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-132-2-179-201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-179-201/}
}
TY  - JOUR
AU  - Silvia Secco
TI  - $L^p$-improving properties of measures supported on curves on the Heisenberg group
JO  - Studia Mathematica
PY  - 1999
SP  - 179
EP  - 201
VL  - 132
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-179-201/
DO  - 10.4064/sm-132-2-179-201
LA  - en
ID  - 10_4064_sm_132_2_179_201
ER  - 
%0 Journal Article
%A Silvia Secco
%T $L^p$-improving properties of measures supported on curves on the Heisenberg group
%J Studia Mathematica
%D 1999
%P 179-201
%V 132
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-179-201/
%R 10.4064/sm-132-2-179-201
%G en
%F 10_4064_sm_132_2_179_201
Silvia Secco. $L^p$-improving properties of measures supported on curves on the Heisenberg group. Studia Mathematica, Tome 132 (1999) no. 2, pp. 179-201. doi: 10.4064/sm-132-2-179-201

Cité par Sources :