A quasi-nilpotent operator with reflexive commutant, II
Studia Mathematica, Tome 132 (1999) no. 2, pp. 173-177

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms $|T^n|$ converge to zero arbitrarily fast.
DOI : 10.4064/sm-132-2-173-177
Keywords: quasinilpotent operator, commutant, reflexivity

V. Müller 1 ; M. Zając 1

1
@article{10_4064_sm_132_2_173_177,
     author = {V. M\"uller and M. Zaj\k{a}c},
     title = {A quasi-nilpotent operator with reflexive commutant, {II}},
     journal = {Studia Mathematica},
     pages = {173--177},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-132-2-173-177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-173-177/}
}
TY  - JOUR
AU  - V. Müller
AU  - M. Zając
TI  - A quasi-nilpotent operator with reflexive commutant, II
JO  - Studia Mathematica
PY  - 1999
SP  - 173
EP  - 177
VL  - 132
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-173-177/
DO  - 10.4064/sm-132-2-173-177
LA  - en
ID  - 10_4064_sm_132_2_173_177
ER  - 
%0 Journal Article
%A V. Müller
%A M. Zając
%T A quasi-nilpotent operator with reflexive commutant, II
%J Studia Mathematica
%D 1999
%P 173-177
%V 132
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-173-177/
%R 10.4064/sm-132-2-173-177
%G en
%F 10_4064_sm_132_2_173_177
V. Müller; M. Zając. A quasi-nilpotent operator with reflexive commutant, II. Studia Mathematica, Tome 132 (1999) no. 2, pp. 173-177. doi: 10.4064/sm-132-2-173-177

Cité par Sources :