Functional calculi, regularized semigroups and integrated semigroups
Studia Mathematica, Tome 132 (1999) no. 2, pp. 151-172
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize closed linear operators A, on a Banach space, for which the corresponding abstract Cauchy problem has a unique polynomially bounded solution for all initial data in the domain of $A^n$, for some nonnegative integer n, in terms of functional calculi, regularized semigroups, integrated semigroups and the growth of the resolvent in the right half-plane. We construct a semigroup analogue of a spectral distribution for such operators, and an extended functional calculus: When the abstract Cauchy problem has a unique $O(1 + t^k)$ solution for all initial data in the domain of $A^n$, for some nonnegative integer n, then a closed operator f(A) is defined whenever f is the Laplace transform of a derivative of any order, in the sense of distributions, of a function F such that $t → (1 + t^k)F(t)$ is in $L^{1}([0,∞))$. This includes fractional powers. In general, A is neither bounded nor densely defined.
Affiliations des auteurs :
Ralph de Laubenfels 1 ; Mustapha Jazar 1
@article{10_4064_sm_132_2_151_172,
author = {Ralph de Laubenfels and Mustapha Jazar},
title = {Functional calculi, regularized semigroups and integrated semigroups},
journal = {Studia Mathematica},
pages = {151--172},
publisher = {mathdoc},
volume = {132},
number = {2},
year = {1999},
doi = {10.4064/sm-132-2-151-172},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-151-172/}
}
TY - JOUR AU - Ralph de Laubenfels AU - Mustapha Jazar TI - Functional calculi, regularized semigroups and integrated semigroups JO - Studia Mathematica PY - 1999 SP - 151 EP - 172 VL - 132 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-151-172/ DO - 10.4064/sm-132-2-151-172 LA - en ID - 10_4064_sm_132_2_151_172 ER -
%0 Journal Article %A Ralph de Laubenfels %A Mustapha Jazar %T Functional calculi, regularized semigroups and integrated semigroups %J Studia Mathematica %D 1999 %P 151-172 %V 132 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-151-172/ %R 10.4064/sm-132-2-151-172 %G en %F 10_4064_sm_132_2_151_172
Ralph de Laubenfels; Mustapha Jazar. Functional calculi, regularized semigroups and integrated semigroups. Studia Mathematica, Tome 132 (1999) no. 2, pp. 151-172. doi: 10.4064/sm-132-2-151-172
Cité par Sources :