Translation-invariant operators on Lorentz spaces $L(1,q)$ with $0  q  1$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 132 (1999) no. 2, pp. 101-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study convolution operators bounded on the non-normable Lorentz spaces $L^{1,q}$ of the real line and the torus. Here $0  q  1$. On the real line, such an operator is given by convolution with a discrete measure, but on the torus a convolutor can also be an integrable function. We then give some necessary and some sufficient conditions for a measure or a function to be a convolutor on $L^{1,q}$. In particular, when the positions of the atoms of a discrete measure are linearly independent over the rationals, we give a necessary and sufficient condition. This condition is, however, only sufficient in the general case.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Lorentz space, convolution operator
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Leonardo Colzani, Peter Sjögren 1
@article{10_4064_sm_132_2_101_124,
     author = {Leonardo Colzani, Peter Sj\"ogren},
     title = {Translation-invariant operators on {Lorentz} spaces $L(1,q)$ with $0 < q < 1$},
     journal = {Studia Mathematica},
     pages = {101--124},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {1999},
     doi = {10.4064/sm-132-2-101-124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-101-124/}
}
                      
                      
                    TY - JOUR AU - Leonardo Colzani, Peter Sjögren TI - Translation-invariant operators on Lorentz spaces $L(1,q)$ with $0 < q < 1$ JO - Studia Mathematica PY - 1999 SP - 101 EP - 124 VL - 132 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-101-124/ DO - 10.4064/sm-132-2-101-124 LA - en ID - 10_4064_sm_132_2_101_124 ER -
%0 Journal Article %A Leonardo Colzani, Peter Sjögren %T Translation-invariant operators on Lorentz spaces $L(1,q)$ with $0 < q < 1$ %J Studia Mathematica %D 1999 %P 101-124 %V 132 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-2-101-124/ %R 10.4064/sm-132-2-101-124 %G en %F 10_4064_sm_132_2_101_124
Leonardo Colzani, Peter Sjögren. Translation-invariant operators on Lorentz spaces $L(1,q)$ with $0 < q < 1$. Studia Mathematica, Tome 132 (1999) no. 2, pp. 101-124. doi: 10.4064/sm-132-2-101-124
Cité par Sources :
