On decompositions of Banach spaces into a sum of operator ranges
Studia Mathematica, Tome 132 (1999) no. 1, pp. 91-100
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is proved that a separable Banach space X admits a representation $X = X_1 + X_2$ as a sum (not necessarily direct) of two infinite-codimensional closed subspaces $X_1$ and $X_2$ if and only if it admits a representation $X = A_1(Y_1) + A_2(Y_2)$ as a sum (not necessarily direct) of two infinite-codimensional operator ranges. Suppose that a separable Banach space X admits a representation as above. Then it admits a representation $X = T_1(Z_1) + T_2(Z_2)$ such that neither of the operator ranges $T_1(Z_1)$, $T_2(Z_2)$ contains an infinite-dimensional closed subspace if and only if X does not contain an isomorphic copy of $l_1$.
@article{10_4064_sm_132_1_91_100,
author = {V. P. Fonf and V. Shevchik},
title = {On decompositions of {Banach} spaces into a sum of operator ranges},
journal = {Studia Mathematica},
pages = {91--100},
year = {1999},
volume = {132},
number = {1},
doi = {10.4064/sm-132-1-91-100},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-91-100/}
}
TY - JOUR AU - V. P. Fonf AU - V. Shevchik TI - On decompositions of Banach spaces into a sum of operator ranges JO - Studia Mathematica PY - 1999 SP - 91 EP - 100 VL - 132 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-91-100/ DO - 10.4064/sm-132-1-91-100 LA - en ID - 10_4064_sm_132_1_91_100 ER -
V. P. Fonf; V. Shevchik. On decompositions of Banach spaces into a sum of operator ranges. Studia Mathematica, Tome 132 (1999) no. 1, pp. 91-100. doi: 10.4064/sm-132-1-91-100
Cité par Sources :