On decompositions of Banach spaces into a sum of operator ranges
Studia Mathematica, Tome 132 (1999) no. 1, pp. 91-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that a separable Banach space X admits a representation $X = X_1 + X_2$ as a sum (not necessarily direct) of two infinite-codimensional closed subspaces $X_1$ and $X_2$ if and only if it admits a representation $X = A_1(Y_1) + A_2(Y_2)$ as a sum (not necessarily direct) of two infinite-codimensional operator ranges. Suppose that a separable Banach space X admits a representation as above. Then it admits a representation $X = T_1(Z_1) + T_2(Z_2)$ such that neither of the operator ranges $T_1(Z_1)$, $T_2(Z_2)$ contains an infinite-dimensional closed subspace if and only if X does not contain an isomorphic copy of $l_1$.
DOI : 10.4064/sm-132-1-91-100

V. P. Fonf 1 ; V. Shevchik 1

1
@article{10_4064_sm_132_1_91_100,
     author = {V. P. Fonf and V. Shevchik},
     title = {On decompositions of {Banach} spaces into a sum of operator ranges},
     journal = {Studia Mathematica},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-91-100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-91-100/}
}
TY  - JOUR
AU  - V. P. Fonf
AU  - V. Shevchik
TI  - On decompositions of Banach spaces into a sum of operator ranges
JO  - Studia Mathematica
PY  - 1999
SP  - 91
EP  - 100
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-91-100/
DO  - 10.4064/sm-132-1-91-100
LA  - en
ID  - 10_4064_sm_132_1_91_100
ER  - 
%0 Journal Article
%A V. P. Fonf
%A V. Shevchik
%T On decompositions of Banach spaces into a sum of operator ranges
%J Studia Mathematica
%D 1999
%P 91-100
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-91-100/
%R 10.4064/sm-132-1-91-100
%G en
%F 10_4064_sm_132_1_91_100
V. P. Fonf; V. Shevchik. On decompositions of Banach spaces into a sum of operator ranges. Studia Mathematica, Tome 132 (1999) no. 1, pp. 91-100. doi: 10.4064/sm-132-1-91-100

Cité par Sources :