Lower bounds for Schrödinger operators in H¹(ℝ)
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 132 (1999) no. 1, pp. 79-89
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove trace inequalities of type $||u'||^2_{L^2} + ∑_{j∈ℤ} k_{j} |u(a_j)|^2 ≥ λ ||u||^2_{L^2}$ where $u ∈ H^1(ℝ)$, under suitable hypotheses on the sequences ${a_j}_{j∈ℤ}$ and ${k_j}_{j∈ℤ}$, with the first sequence increasing and the second bounded.
            
            
            
          
        
      @article{10_4064_sm_132_1_79_89,
     author = {Ronan Pouliquen},
     title = {Lower bounds for {Schr\"odinger} operators in {H{\textonesuperior}(\ensuremath{\mathbb{R}})}},
     journal = {Studia Mathematica},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-79-89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-79-89/}
}
                      
                      
                    Ronan Pouliquen. Lower bounds for Schrödinger operators in H¹(ℝ). Studia Mathematica, Tome 132 (1999) no. 1, pp. 79-89. doi: 10.4064/sm-132-1-79-89
Cité par Sources :
