Lower bounds for Schrödinger operators in H¹(ℝ)
Studia Mathematica, Tome 132 (1999) no. 1, pp. 79-89

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove trace inequalities of type $||u'||^2_{L^2} + ∑_{j∈ℤ} k_{j} |u(a_j)|^2 ≥ λ ||u||^2_{L^2}$ where $u ∈ H^1(ℝ)$, under suitable hypotheses on the sequences ${a_j}_{j∈ℤ}$ and ${k_j}_{j∈ℤ}$, with the first sequence increasing and the second bounded.
DOI : 10.4064/sm-132-1-79-89

Ronan Pouliquen 1

1
@article{10_4064_sm_132_1_79_89,
     author = {Ronan Pouliquen},
     title = {Lower bounds for {Schr\"odinger} operators in {H{\textonesuperior}(\ensuremath{\mathbb{R}})}},
     journal = {Studia Mathematica},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-79-89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-79-89/}
}
TY  - JOUR
AU  - Ronan Pouliquen
TI  - Lower bounds for Schrödinger operators in H¹(ℝ)
JO  - Studia Mathematica
PY  - 1999
SP  - 79
EP  - 89
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-79-89/
DO  - 10.4064/sm-132-1-79-89
LA  - en
ID  - 10_4064_sm_132_1_79_89
ER  - 
%0 Journal Article
%A Ronan Pouliquen
%T Lower bounds for Schrödinger operators in H¹(ℝ)
%J Studia Mathematica
%D 1999
%P 79-89
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-79-89/
%R 10.4064/sm-132-1-79-89
%G en
%F 10_4064_sm_132_1_79_89
Ronan Pouliquen. Lower bounds for Schrödinger operators in H¹(ℝ). Studia Mathematica, Tome 132 (1999) no. 1, pp. 79-89. doi: 10.4064/sm-132-1-79-89

Cité par Sources :