Lower bounds for Schrödinger operators in H¹(ℝ)
Studia Mathematica, Tome 132 (1999) no. 1, pp. 79-89
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove trace inequalities of type $||u'||^2_{L^2} + ∑_{j∈ℤ} k_{j} |u(a_j)|^2 ≥ λ ||u||^2_{L^2}$ where $u ∈ H^1(ℝ)$, under suitable hypotheses on the sequences ${a_j}_{j∈ℤ}$ and ${k_j}_{j∈ℤ}$, with the first sequence increasing and the second bounded.
@article{10_4064_sm_132_1_79_89,
author = {Ronan Pouliquen},
title = {Lower bounds for {Schr\"odinger} operators in {H{\textonesuperior}(\ensuremath{\mathbb{R}})}},
journal = {Studia Mathematica},
pages = {79--89},
year = {1999},
volume = {132},
number = {1},
doi = {10.4064/sm-132-1-79-89},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-79-89/}
}
Ronan Pouliquen. Lower bounds for Schrödinger operators in H¹(ℝ). Studia Mathematica, Tome 132 (1999) no. 1, pp. 79-89. doi: 10.4064/sm-132-1-79-89
Cité par Sources :