Strong continuity of semigroup homomorphisms
Studia Mathematica, Tome 132 (1999) no. 1, pp. 71-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and Lip(C) the space of Lipschitz functions ⨍: C → C. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism T: J → L(X) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms T: J → Lip(C) and for strongly measurable homomorphisms T: J → L(X).
Keywords:
representation, semigroup homomorphism, weak continuity, strong continuity, Lipschitz map
Affiliations des auteurs :
Bolis Basit 1 ; A. Pryde 1
@article{10_4064_sm_132_1_71_78,
author = {Bolis Basit and A. Pryde},
title = {Strong continuity of semigroup homomorphisms},
journal = {Studia Mathematica},
pages = {71--78},
publisher = {mathdoc},
volume = {132},
number = {1},
year = {1999},
doi = {10.4064/sm-132-1-71-78},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-71-78/}
}
TY - JOUR AU - Bolis Basit AU - A. Pryde TI - Strong continuity of semigroup homomorphisms JO - Studia Mathematica PY - 1999 SP - 71 EP - 78 VL - 132 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-71-78/ DO - 10.4064/sm-132-1-71-78 LA - en ID - 10_4064_sm_132_1_71_78 ER -
Bolis Basit; A. Pryde. Strong continuity of semigroup homomorphisms. Studia Mathematica, Tome 132 (1999) no. 1, pp. 71-78. doi: 10.4064/sm-132-1-71-78
Cité par Sources :