Strong continuity of semigroup homomorphisms
Studia Mathematica, Tome 132 (1999) no. 1, pp. 71-78

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and Lip(C) the space of Lipschitz functions ⨍: C → C. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism T: J → L(X) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms T: J → Lip(C) and for strongly measurable homomorphisms T: J → L(X).
DOI : 10.4064/sm-132-1-71-78
Keywords: representation, semigroup homomorphism, weak continuity, strong continuity, Lipschitz map

Bolis Basit 1 ; A. Pryde 1

1
@article{10_4064_sm_132_1_71_78,
     author = {Bolis Basit and A. Pryde},
     title = {Strong continuity of semigroup homomorphisms},
     journal = {Studia Mathematica},
     pages = {71--78},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-71-78},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-71-78/}
}
TY  - JOUR
AU  - Bolis Basit
AU  - A. Pryde
TI  - Strong continuity of semigroup homomorphisms
JO  - Studia Mathematica
PY  - 1999
SP  - 71
EP  - 78
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-71-78/
DO  - 10.4064/sm-132-1-71-78
LA  - en
ID  - 10_4064_sm_132_1_71_78
ER  - 
%0 Journal Article
%A Bolis Basit
%A A. Pryde
%T Strong continuity of semigroup homomorphisms
%J Studia Mathematica
%D 1999
%P 71-78
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-71-78/
%R 10.4064/sm-132-1-71-78
%G en
%F 10_4064_sm_132_1_71_78
Bolis Basit; A. Pryde. Strong continuity of semigroup homomorphisms. Studia Mathematica, Tome 132 (1999) no. 1, pp. 71-78. doi: 10.4064/sm-132-1-71-78

Cité par Sources :