A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras
Studia Mathematica, Tome 132 (1999) no. 1, pp. 37-69

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function $φ_a(t):=φ(α_t a)$ t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum $σ_w*(φ_a)$ is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define $Ʌ_φ^a$ to be the union of all sets $σ_w*(φ_a)$ where a ∈ A, and $Λ_α$ to be the closure of the union of all sets $Ʌ_φ^a$ where φ ∈ ∆(A), and call $Λ_α$ the unitary spectrum of α. Starting by showing that the closure of $Ʌ_φ^a$ (for fixed φ ∈ ∆(A)) is a subsemigroup of Ĝ we characterize the structure properties of the group representation α such as norm continuity, growth and existence of non-trivial invariant subspaces through its unitary spectrum $Λ_α.$ For an automorphism T of a semisimple commutative Banach algebra A we consider the group representation T: ℤ → Aut (A) defined by $T_n:=T^n$ for all n ∈ ℤ. It is shown that $Λ_T=σ(T)∩
DOI : 10.4064/sm-132-1-37-69
Keywords: automorphism, group representation, spectral analysis

Sen Zhong Huang 1

1
@article{10_4064_sm_132_1_37_69,
     author = {Sen Zhong Huang},
     title = {A spectral theory for locally compact abelian groups of automorphisms of commutative {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {37--69},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-37-69},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-37-69/}
}
TY  - JOUR
AU  - Sen Zhong Huang
TI  - A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras
JO  - Studia Mathematica
PY  - 1999
SP  - 37
EP  - 69
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-37-69/
DO  - 10.4064/sm-132-1-37-69
LA  - en
ID  - 10_4064_sm_132_1_37_69
ER  - 
%0 Journal Article
%A Sen Zhong Huang
%T A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras
%J Studia Mathematica
%D 1999
%P 37-69
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-37-69/
%R 10.4064/sm-132-1-37-69
%G en
%F 10_4064_sm_132_1_37_69
Sen Zhong Huang. A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras. Studia Mathematica, Tome 132 (1999) no. 1, pp. 37-69. doi: 10.4064/sm-132-1-37-69

Cité par Sources :