A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 132 (1999) no. 1, pp. 37-69
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function $φ_a(t):=φ(α_t a)$ t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum $σ_w*(φ_a)$ is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define $Ʌ_φ^a$ to be the union of all sets $σ_w*(φ_a)$ where a ∈ A, and $Λ_α$ to be the closure of the union of all sets $Ʌ_φ^a$ where φ ∈ ∆(A), and call $Λ_α$ the unitary spectrum of α. Starting by showing that the closure of $Ʌ_φ^a$ (for fixed φ ∈ ∆(A)) is a subsemigroup of Ĝ we characterize the structure properties of the group representation α such as norm continuity, growth and existence of non-trivial invariant subspaces through its unitary spectrum $Λ_α.$ For an automorphism T of a semisimple commutative Banach algebra A we consider the group representation T: ℤ → Aut (A) defined by $T_n:=T^n$ for all n ∈ ℤ. It is shown that $Λ_T=σ(T)∩
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
automorphism, group representation, spectral analysis
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Sen Zhong Huang 1
@article{10_4064_sm_132_1_37_69,
     author = {Sen Zhong Huang},
     title = {A spectral theory for locally compact abelian groups of automorphisms of commutative {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {37--69},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-37-69},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-37-69/}
}
                      
                      
                    TY - JOUR AU - Sen Zhong Huang TI - A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras JO - Studia Mathematica PY - 1999 SP - 37 EP - 69 VL - 132 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-37-69/ DO - 10.4064/sm-132-1-37-69 LA - en ID - 10_4064_sm_132_1_37_69 ER -
%0 Journal Article %A Sen Zhong Huang %T A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras %J Studia Mathematica %D 1999 %P 37-69 %V 132 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-37-69/ %R 10.4064/sm-132-1-37-69 %G en %F 10_4064_sm_132_1_37_69
Sen Zhong Huang. A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras. Studia Mathematica, Tome 132 (1999) no. 1, pp. 37-69. doi: 10.4064/sm-132-1-37-69
Cité par Sources :