Banach spaces with a supershrinking basis
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 132 (1999) no. 1, pp. 29-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without $c_0$ copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the $c_0$-theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in $c_0$.
            
            
            
          
        
      @article{10_4064_sm_132_1_29_36,
     author = {Gin\'es L\'opez},
     title = {Banach spaces with a supershrinking basis},
     journal = {Studia Mathematica},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-29-36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-29-36/}
}
                      
                      
                    Ginés López. Banach spaces with a supershrinking basis. Studia Mathematica, Tome 132 (1999) no. 1, pp. 29-36. doi: 10.4064/sm-132-1-29-36
Cité par Sources :
