Banach spaces with a supershrinking basis
Studia Mathematica, Tome 132 (1999) no. 1, pp. 29-36
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without $c_0$ copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the $c_0$-theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in $c_0$.
@article{10_4064_sm_132_1_29_36,
author = {Gin\'es L\'opez},
title = {Banach spaces with a supershrinking basis},
journal = {Studia Mathematica},
pages = {29--36},
year = {1999},
volume = {132},
number = {1},
doi = {10.4064/sm-132-1-29-36},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-29-36/}
}
Ginés López. Banach spaces with a supershrinking basis. Studia Mathematica, Tome 132 (1999) no. 1, pp. 29-36. doi: 10.4064/sm-132-1-29-36
Cité par Sources :