Banach spaces with a supershrinking basis
Studia Mathematica, Tome 132 (1999) no. 1, pp. 29-36

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without $c_0$ copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the $c_0$-theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in $c_0$.
DOI : 10.4064/sm-132-1-29-36

Ginés López 1

1
@article{10_4064_sm_132_1_29_36,
     author = {Gin\'es L\'opez},
     title = {Banach spaces with a supershrinking basis},
     journal = {Studia Mathematica},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-29-36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-29-36/}
}
TY  - JOUR
AU  - Ginés López
TI  - Banach spaces with a supershrinking basis
JO  - Studia Mathematica
PY  - 1999
SP  - 29
EP  - 36
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-29-36/
DO  - 10.4064/sm-132-1-29-36
LA  - en
ID  - 10_4064_sm_132_1_29_36
ER  - 
%0 Journal Article
%A Ginés López
%T Banach spaces with a supershrinking basis
%J Studia Mathematica
%D 1999
%P 29-36
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-29-36/
%R 10.4064/sm-132-1-29-36
%G en
%F 10_4064_sm_132_1_29_36
Ginés López. Banach spaces with a supershrinking basis. Studia Mathematica, Tome 132 (1999) no. 1, pp. 29-36. doi: 10.4064/sm-132-1-29-36

Cité par Sources :