Rational interpolants with preassigned poles, theoretical aspects
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 132 (1999) no. 1, pp. 1-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let ⨍ be an analytic function on a compact subset K of the complex plane ℂ, and let $r_n(z)$ denote the rational function of degree n with poles at the points ${b_{ni}}^{n}_{i=1}$ and interpolating ⨍ at the points ${a_{ni}}^{n}_{i=0}$. We investigate how these points should be chosen to guarantee the convergence of $r_n$ to ⨍ as n → ∞ for all functions ⨍ analytic on K. When K has no "holes" (see [8] and [3]), it is possible to choose the poles ${b_{ni}}_{i,n}$ without limit points on K. In this paper we study the case of general compact sets K, when such a separation is not always possible. This fact causes changes both in the results and in the methods of proofs. We consider also the case of functions analytic in open domains. It turns out that in our general setting there is no longer a "duality" ([8], Section 8.3, Corollary 2) between the poles and the interpolation points.
            
            
            
          
        
      @article{10_4064_sm_132_1_1_14,
     author = {Amiran Ambroladze, Hans Wallin},
     title = {Rational interpolants with preassigned poles, theoretical aspects},
     journal = {Studia Mathematica},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-1-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-1-14/}
}
                      
                      
                    TY - JOUR AU - Amiran Ambroladze, Hans Wallin TI - Rational interpolants with preassigned poles, theoretical aspects JO - Studia Mathematica PY - 1999 SP - 1 EP - 14 VL - 132 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-1-14/ DO - 10.4064/sm-132-1-1-14 LA - en ID - 10_4064_sm_132_1_1_14 ER -
%0 Journal Article %A Amiran Ambroladze, Hans Wallin %T Rational interpolants with preassigned poles, theoretical aspects %J Studia Mathematica %D 1999 %P 1-14 %V 132 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-1-14/ %R 10.4064/sm-132-1-1-14 %G en %F 10_4064_sm_132_1_1_14
Amiran Ambroladze, Hans Wallin. Rational interpolants with preassigned poles, theoretical aspects. Studia Mathematica, Tome 132 (1999) no. 1, pp. 1-14. doi: 10.4064/sm-132-1-1-14
Cité par Sources :
