Rational interpolants with preassigned poles, theoretical aspects
Studia Mathematica, Tome 132 (1999) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ⨍ be an analytic function on a compact subset K of the complex plane ℂ, and let $r_n(z)$ denote the rational function of degree n with poles at the points ${b_{ni}}^{n}_{i=1}$ and interpolating ⨍ at the points ${a_{ni}}^{n}_{i=0}$. We investigate how these points should be chosen to guarantee the convergence of $r_n$ to ⨍ as n → ∞ for all functions ⨍ analytic on K. When K has no "holes" (see [8] and [3]), it is possible to choose the poles ${b_{ni}}_{i,n}$ without limit points on K. In this paper we study the case of general compact sets K, when such a separation is not always possible. This fact causes changes both in the results and in the methods of proofs. We consider also the case of functions analytic in open domains. It turns out that in our general setting there is no longer a "duality" ([8], Section 8.3, Corollary 2) between the poles and the interpolation points.
DOI : 10.4064/sm-132-1-1-14

Amiran Ambroladze, Hans Wallin 1

1
@article{10_4064_sm_132_1_1_14,
     author = {Amiran Ambroladze, Hans Wallin},
     title = {Rational interpolants with preassigned poles, theoretical aspects},
     journal = {Studia Mathematica},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {1999},
     doi = {10.4064/sm-132-1-1-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-1-14/}
}
TY  - JOUR
AU  - Amiran Ambroladze, Hans Wallin
TI  - Rational interpolants with preassigned poles, theoretical aspects
JO  - Studia Mathematica
PY  - 1999
SP  - 1
EP  - 14
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-1-14/
DO  - 10.4064/sm-132-1-1-14
LA  - en
ID  - 10_4064_sm_132_1_1_14
ER  - 
%0 Journal Article
%A Amiran Ambroladze, Hans Wallin
%T Rational interpolants with preassigned poles, theoretical aspects
%J Studia Mathematica
%D 1999
%P 1-14
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-132-1-1-14/
%R 10.4064/sm-132-1-1-14
%G en
%F 10_4064_sm_132_1_1_14
Amiran Ambroladze, Hans Wallin. Rational interpolants with preassigned poles, theoretical aspects. Studia Mathematica, Tome 132 (1999) no. 1, pp. 1-14. doi: 10.4064/sm-132-1-1-14

Cité par Sources :