Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
Studia Mathematica, Tome 131 (1998) no. 3, pp. 289-302

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in $ℝ^d$ are considered. Techniques used here are inspired by [3].
DOI : 10.4064/sm-131-3-289-302
Keywords: multivalued ergodic theorems, measurable multifunctions, random sets, subadditive superstationary processes, set convergence

G. Krupa 1

1
@article{10_4064_sm_131_3_289_302,
     author = {G. Krupa},
     title = {Ergodic theorems for subadditive superstationary families of random sets with values in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {289--302},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-131-3-289-302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/}
}
TY  - JOUR
AU  - G. Krupa
TI  - Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 289
EP  - 302
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/
DO  - 10.4064/sm-131-3-289-302
LA  - en
ID  - 10_4064_sm_131_3_289_302
ER  - 
%0 Journal Article
%A G. Krupa
%T Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
%J Studia Mathematica
%D 1998
%P 289-302
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/
%R 10.4064/sm-131-3-289-302
%G en
%F 10_4064_sm_131_3_289_302
G. Krupa. Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces. Studia Mathematica, Tome 131 (1998) no. 3, pp. 289-302. doi: 10.4064/sm-131-3-289-302

Cité par Sources :