Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
Studia Mathematica, Tome 131 (1998) no. 3, pp. 289-302
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in $ℝ^d$ are considered. Techniques used here are inspired by [3].
Keywords:
multivalued ergodic theorems, measurable multifunctions, random sets, subadditive superstationary processes, set convergence
@article{10_4064_sm_131_3_289_302,
author = {G. Krupa},
title = {Ergodic theorems for subadditive superstationary families of random sets with values in {Banach} spaces},
journal = {Studia Mathematica},
pages = {289--302},
year = {1998},
volume = {131},
number = {3},
doi = {10.4064/sm-131-3-289-302},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/}
}
TY - JOUR AU - G. Krupa TI - Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces JO - Studia Mathematica PY - 1998 SP - 289 EP - 302 VL - 131 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/ DO - 10.4064/sm-131-3-289-302 LA - en ID - 10_4064_sm_131_3_289_302 ER -
%0 Journal Article %A G. Krupa %T Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces %J Studia Mathematica %D 1998 %P 289-302 %V 131 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/ %R 10.4064/sm-131-3-289-302 %G en %F 10_4064_sm_131_3_289_302
G. Krupa. Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces. Studia Mathematica, Tome 131 (1998) no. 3, pp. 289-302. doi: 10.4064/sm-131-3-289-302
Cité par Sources :