Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 131 (1998) no. 3, pp. 289-302
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in $ℝ^d$ are considered. Techniques used here are inspired by [3].
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multivalued ergodic theorems, measurable multifunctions, random sets, subadditive superstationary processes, set convergence
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              G. Krupa 1
@article{10_4064_sm_131_3_289_302,
     author = {G. Krupa},
     title = {Ergodic theorems for subadditive superstationary families of random sets with values in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {289--302},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-131-3-289-302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/}
}
                      
                      
                    TY - JOUR AU - G. Krupa TI - Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces JO - Studia Mathematica PY - 1998 SP - 289 EP - 302 VL - 131 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/ DO - 10.4064/sm-131-3-289-302 LA - en ID - 10_4064_sm_131_3_289_302 ER -
%0 Journal Article %A G. Krupa %T Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces %J Studia Mathematica %D 1998 %P 289-302 %V 131 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-289-302/ %R 10.4064/sm-131-3-289-302 %G en %F 10_4064_sm_131_3_289_302
G. Krupa. Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces. Studia Mathematica, Tome 131 (1998) no. 3, pp. 289-302. doi: 10.4064/sm-131-3-289-302
Cité par Sources :
