Riesz means of Fourier transforms and Fourier series on Hardy spaces
Studia Mathematica, Tome 131 (1998) no. 3, pp. 253-270
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from $H_p(ℝ)$ to $L_p(ℝ)$ (1/(α+1) p ∞) and is of weak type (1,1), where $H_p(ℝ)$ is the classical Hardy space. As a consequence we deduce that the Riesz means of a function $⨍ ∈ L_1(ℝ)$ converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on $H_p(ℝ)$ whenever 1/(α+1) p ∞. Thus, in case $⨍ ∈ H_p(ℝ)$, the Riesz means converge to ⨍ in $H_p(ℝ)$ norm (1/(α+1) p ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.
Keywords:
Hardy spaces, p-atom, atomic decomposition, interpolation, Fourier transforms, Riesz means
Affiliations des auteurs :
Ferenc Weisz 1
@article{10_4064_sm_131_3_253_270,
author = {Ferenc Weisz},
title = {Riesz means of {Fourier} transforms and {Fourier} series on {Hardy} spaces},
journal = {Studia Mathematica},
pages = {253--270},
year = {1998},
volume = {131},
number = {3},
doi = {10.4064/sm-131-3-253-270},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-253-270/}
}
TY - JOUR AU - Ferenc Weisz TI - Riesz means of Fourier transforms and Fourier series on Hardy spaces JO - Studia Mathematica PY - 1998 SP - 253 EP - 270 VL - 131 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-253-270/ DO - 10.4064/sm-131-3-253-270 LA - en ID - 10_4064_sm_131_3_253_270 ER -
Ferenc Weisz. Riesz means of Fourier transforms and Fourier series on Hardy spaces. Studia Mathematica, Tome 131 (1998) no. 3, pp. 253-270. doi: 10.4064/sm-131-3-253-270
Cité par Sources :