Riesz means of Fourier transforms and Fourier series on Hardy spaces
Studia Mathematica, Tome 131 (1998) no. 3, pp. 253-270

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from $H_p(ℝ)$ to $L_p(ℝ)$ (1/(α+1) p ∞) and is of weak type (1,1), where $H_p(ℝ)$ is the classical Hardy space. As a consequence we deduce that the Riesz means of a function $⨍ ∈ L_1(ℝ)$ converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on $H_p(ℝ)$ whenever 1/(α+1) p ∞. Thus, in case $⨍ ∈ H_p(ℝ)$, the Riesz means converge to ⨍ in $H_p(ℝ)$ norm (1/(α+1) p ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.
DOI : 10.4064/sm-131-3-253-270
Keywords: Hardy spaces, p-atom, atomic decomposition, interpolation, Fourier transforms, Riesz means

Ferenc Weisz 1

1
@article{10_4064_sm_131_3_253_270,
     author = {Ferenc Weisz},
     title = {Riesz means of {Fourier} transforms and {Fourier} series on {Hardy} spaces},
     journal = {Studia Mathematica},
     pages = {253--270},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-131-3-253-270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-253-270/}
}
TY  - JOUR
AU  - Ferenc Weisz
TI  - Riesz means of Fourier transforms and Fourier series on Hardy spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 253
EP  - 270
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-253-270/
DO  - 10.4064/sm-131-3-253-270
LA  - en
ID  - 10_4064_sm_131_3_253_270
ER  - 
%0 Journal Article
%A Ferenc Weisz
%T Riesz means of Fourier transforms and Fourier series on Hardy spaces
%J Studia Mathematica
%D 1998
%P 253-270
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-253-270/
%R 10.4064/sm-131-3-253-270
%G en
%F 10_4064_sm_131_3_253_270
Ferenc Weisz. Riesz means of Fourier transforms and Fourier series on Hardy spaces. Studia Mathematica, Tome 131 (1998) no. 3, pp. 253-270. doi: 10.4064/sm-131-3-253-270

Cité par Sources :