$L^q$-spectrum of the Bernoulli convolution associated with the golden ratio
Studia Mathematica, Tome 131 (1998) no. 3, pp. 225-251
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Based on a set of higher order self-similar identities for the Bernoulli convolution measure for (√5-1)/2 given by Strichartz et al., we derive a formula for the $L^q$-spectrum, q >0, of the measure. This formula is the first obtained in the case where the open set condition does not hold.
Keywords:
Bernoulli convolution, golden ratio, multifractal measure, $L^q$-spectrum, $L^q$-dimension, Hausdorff dimension, renewal equation, self-similarity
@article{10_4064_sm_131_3_225_251,
author = {Ka-Sing Lau and },
title = {$L^q$-spectrum of the {Bernoulli} convolution associated with the golden ratio},
journal = {Studia Mathematica},
pages = {225--251},
year = {1998},
volume = {131},
number = {3},
doi = {10.4064/sm-131-3-225-251},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-225-251/}
}
TY - JOUR AU - Ka-Sing Lau AU - TI - $L^q$-spectrum of the Bernoulli convolution associated with the golden ratio JO - Studia Mathematica PY - 1998 SP - 225 EP - 251 VL - 131 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-3-225-251/ DO - 10.4064/sm-131-3-225-251 LA - en ID - 10_4064_sm_131_3_225_251 ER -
Ka-Sing Lau; . $L^q$-spectrum of the Bernoulli convolution associated with the golden ratio. Studia Mathematica, Tome 131 (1998) no. 3, pp. 225-251. doi: 10.4064/sm-131-3-225-251
Cité par Sources :