Multiplier transformations on $H^{p}$ spaces
Studia Mathematica, Tome 131 (1998) no. 2, pp. 189-204

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The authors obtain some multiplier theorems on $H^p$ spaces analogous to the classical $L^p$ multiplier theorems of de Leeuw. The main result is that a multiplier operator $(Tf)^(x) = λ(x)f̂(x)$ $(λ ∈ C(ℝ^n))$ is bounded on $H^p(ℝ^n)$ if and only if the restriction ${λ(εm)}_{m∈Λ}$ is an $H^p(T^n)$ bounded multiplier uniformly for ε>0, where Λ is the integer lattice in $ℝ^n$.
DOI : 10.4064/sm-131-2-189-204

Daning Chen 1 ;  1

1
@article{10_4064_sm_131_2_189_204,
     author = {Daning Chen and  },
     title = {Multiplier transformations on $H^{p}$ spaces},
     journal = {Studia Mathematica},
     pages = {189--204},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-131-2-189-204},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-189-204/}
}
TY  - JOUR
AU  - Daning Chen
AU  -  
TI  - Multiplier transformations on $H^{p}$ spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 189
EP  - 204
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-189-204/
DO  - 10.4064/sm-131-2-189-204
LA  - fr
ID  - 10_4064_sm_131_2_189_204
ER  - 
%0 Journal Article
%A Daning Chen
%A  
%T Multiplier transformations on $H^{p}$ spaces
%J Studia Mathematica
%D 1998
%P 189-204
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-189-204/
%R 10.4064/sm-131-2-189-204
%G fr
%F 10_4064_sm_131_2_189_204
Daning Chen;  . Multiplier transformations on $H^{p}$ spaces. Studia Mathematica, Tome 131 (1998) no. 2, pp. 189-204. doi: 10.4064/sm-131-2-189-204

Cité par Sources :