Multiplier transformations on $H^{p}$ spaces
Studia Mathematica, Tome 131 (1998) no. 2, pp. 189-204
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The authors obtain some multiplier theorems on $H^p$ spaces analogous to the classical $L^p$ multiplier theorems of de Leeuw. The main result is that a multiplier operator $(Tf)^(x) = λ(x)f̂(x)$ $(λ ∈ C(ℝ^n))$ is bounded on $H^p(ℝ^n)$ if and only if the restriction ${λ(εm)}_{m∈Λ}$ is an $H^p(T^n)$ bounded multiplier uniformly for ε>0, where Λ is the integer lattice in $ℝ^n$.
@article{10_4064_sm_131_2_189_204,
author = {Daning Chen and },
title = {Multiplier transformations on $H^{p}$ spaces},
journal = {Studia Mathematica},
pages = {189--204},
year = {1998},
volume = {131},
number = {2},
doi = {10.4064/sm-131-2-189-204},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-189-204/}
}
Daning Chen; . Multiplier transformations on $H^{p}$ spaces. Studia Mathematica, Tome 131 (1998) no. 2, pp. 189-204. doi: 10.4064/sm-131-2-189-204
Cité par Sources :