Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators
Studia Mathematica, Tome 131 (1998) no. 2, pp. 179-188
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We obtain a sufficient condition on a B(H)-valued function φ for the operator $⨍ ↦ Γ_φ ⨍'(S)$ to be completely bounded on $H^∞ B(H)$; the Foiaş-Williams-Peller operator | S^t Γ_φ | R_φ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which $(1-r) ||⨍'(re^{iθ})||^2_{B(H)} rdrdθ$ and $(1-r) ||⨍"(re^{iθ})||_{B(H)} rdrdθ$ are Carleson measures, then ⨍ multiplies $(H^1c^1)'$ to itself. Such ⨍ form an algebra A, and when φ'∈ BMO(B(H)), the map $⨍ ↦ Γ_φ ⨍'(S)$ is bounded $A → B(H^2(H), L^2(H) ⊖ H^2(H))$. Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.
Keywords:
polynomially bounded operators, Hankel operators, multipliers, Carleson measures
Affiliations des auteurs :
G. Blower 1
@article{10_4064_sm_131_2_179_188,
author = {G. Blower},
title = {Multipliers of {Hardy} spaces, quadratic integrals and {Foia\c{s}-Williams-Peller} operators},
journal = {Studia Mathematica},
pages = {179--188},
year = {1998},
volume = {131},
number = {2},
doi = {10.4064/sm-131-2-179-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-179-188/}
}
TY - JOUR AU - G. Blower TI - Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators JO - Studia Mathematica PY - 1998 SP - 179 EP - 188 VL - 131 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-179-188/ DO - 10.4064/sm-131-2-179-188 LA - en ID - 10_4064_sm_131_2_179_188 ER -
G. Blower. Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators. Studia Mathematica, Tome 131 (1998) no. 2, pp. 179-188. doi: 10.4064/sm-131-2-179-188
Cité par Sources :