The uniform zero-two law for positive operators in Banach lattices
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 131 (1998) no. 2, pp. 149-153
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let T be a positive power-bounded operator on a Banach lattice. We prove: (i) If $inf_n ||T^n(I-T)||  2$, then there is a k ≥ 1 such that $lim_{n→∞} ||T^n(I-T^k)|| = 0. (ii) $lim_{n→∞} ||T^n(I-T)|| = 0$ if (and only if) $inf_n ||T^n(I-T)||  √3$.
            
            
            
          
        
      @article{10_4064_sm_131_2_149_153,
     author = {Michael Lin},
     title = {The uniform zero-two law for positive operators in {Banach} lattices},
     journal = {Studia Mathematica},
     pages = {149--153},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-131-2-149-153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/}
}
                      
                      
                    TY - JOUR AU - Michael Lin TI - The uniform zero-two law for positive operators in Banach lattices JO - Studia Mathematica PY - 1998 SP - 149 EP - 153 VL - 131 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/ DO - 10.4064/sm-131-2-149-153 LA - en ID - 10_4064_sm_131_2_149_153 ER -
Michael Lin. The uniform zero-two law for positive operators in Banach lattices. Studia Mathematica, Tome 131 (1998) no. 2, pp. 149-153. doi: 10.4064/sm-131-2-149-153
Cité par Sources :
