The uniform zero-two law for positive operators in Banach lattices
Studia Mathematica, Tome 131 (1998) no. 2, pp. 149-153

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let T be a positive power-bounded operator on a Banach lattice. We prove: (i) If $inf_n ||T^n(I-T)|| 2$, then there is a k ≥ 1 such that $lim_{n→∞} ||T^n(I-T^k)|| = 0. (ii) $lim_{n→∞} ||T^n(I-T)|| = 0$ if (and only if) $inf_n ||T^n(I-T)|| √3$.
DOI : 10.4064/sm-131-2-149-153

Michael Lin 1

1
@article{10_4064_sm_131_2_149_153,
     author = {Michael Lin},
     title = {The uniform zero-two law for positive operators in {Banach} lattices},
     journal = {Studia Mathematica},
     pages = {149--153},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-131-2-149-153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/}
}
TY  - JOUR
AU  - Michael Lin
TI  - The uniform zero-two law for positive operators in Banach lattices
JO  - Studia Mathematica
PY  - 1998
SP  - 149
EP  - 153
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/
DO  - 10.4064/sm-131-2-149-153
LA  - en
ID  - 10_4064_sm_131_2_149_153
ER  - 
%0 Journal Article
%A Michael Lin
%T The uniform zero-two law for positive operators in Banach lattices
%J Studia Mathematica
%D 1998
%P 149-153
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/
%R 10.4064/sm-131-2-149-153
%G en
%F 10_4064_sm_131_2_149_153
Michael Lin. The uniform zero-two law for positive operators in Banach lattices. Studia Mathematica, Tome 131 (1998) no. 2, pp. 149-153. doi: 10.4064/sm-131-2-149-153

Cité par Sources :