The uniform zero-two law for positive operators in Banach lattices
Studia Mathematica, Tome 131 (1998) no. 2, pp. 149-153
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let T be a positive power-bounded operator on a Banach lattice. We prove: (i) If $inf_n ||T^n(I-T)|| 2$, then there is a k ≥ 1 such that $lim_{n→∞} ||T^n(I-T^k)|| = 0. (ii) $lim_{n→∞} ||T^n(I-T)|| = 0$ if (and only if) $inf_n ||T^n(I-T)|| √3$.
@article{10_4064_sm_131_2_149_153,
author = {Michael Lin},
title = {The uniform zero-two law for positive operators in {Banach} lattices},
journal = {Studia Mathematica},
pages = {149--153},
year = {1998},
volume = {131},
number = {2},
doi = {10.4064/sm-131-2-149-153},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/}
}
TY - JOUR AU - Michael Lin TI - The uniform zero-two law for positive operators in Banach lattices JO - Studia Mathematica PY - 1998 SP - 149 EP - 153 VL - 131 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-149-153/ DO - 10.4064/sm-131-2-149-153 LA - en ID - 10_4064_sm_131_2_149_153 ER -
Michael Lin. The uniform zero-two law for positive operators in Banach lattices. Studia Mathematica, Tome 131 (1998) no. 2, pp. 149-153. doi: 10.4064/sm-131-2-149-153
Cité par Sources :