Weighted inequalities for one-sided maximal functions in Orlicz spaces
Studia Mathematica, Tome 131 (1998) no. 2, pp. 101-114
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $M_{g}^{+}$ be the maximal operator defined by $M_{g}^{+}⨍(x) = sup_{h>0} (ʃ_{x}^{x+h} |⨍|g)/(ʃ_{x}^{x+h} g)$, where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy $Δ_2$. We characterize the pairs of positive functions (u,ω) such that the weak type inequality $u({x ∈ ℝ | M_{g}^{+}⨍(x) > λ}) ≤ C/(Φ(λ)) ʃ_ℝ Φ(|⨍|)ω$ holds for every ⨍ in the Orlicz space $L_Φ(ω)$. We also characterize the positive functions ω such that the integral inequality $ʃ_ℝ Φ(|M_{g}^{+}⨍|)ω ≤ ʃ_ℝ Φ(|⨍|)ω$ holds for every $⨍ ∈ L_Φ(ω)$. Our results include some already obtained for functions in $L^p$ and yield as consequences one-dimensional theorems due to Gallardo and Kerman-Torchinsky.
Keywords:
one-sided maximal functions, weighted inequalities, weights, Orlicz spaces
Affiliations des auteurs :
Pedro Ortega Salvador 1
@article{10_4064_sm_131_2_101_114,
author = {Pedro Ortega Salvador},
title = {Weighted inequalities for one-sided maximal functions in {Orlicz} spaces},
journal = {Studia Mathematica},
pages = {101--114},
year = {1998},
volume = {131},
number = {2},
doi = {10.4064/sm-131-2-101-114},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-101-114/}
}
TY - JOUR AU - Pedro Ortega Salvador TI - Weighted inequalities for one-sided maximal functions in Orlicz spaces JO - Studia Mathematica PY - 1998 SP - 101 EP - 114 VL - 131 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-101-114/ DO - 10.4064/sm-131-2-101-114 LA - en ID - 10_4064_sm_131_2_101_114 ER -
Pedro Ortega Salvador. Weighted inequalities for one-sided maximal functions in Orlicz spaces. Studia Mathematica, Tome 131 (1998) no. 2, pp. 101-114. doi: 10.4064/sm-131-2-101-114
Cité par Sources :