Weighted inequalities for one-sided maximal functions in Orlicz spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 131 (1998) no. 2, pp. 101-114
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $M_{g}^{+}$ be the maximal operator defined by $M_{g}^{+}⨍(x) = sup_{h>0} (ʃ_{x}^{x+h} |⨍|g)/(ʃ_{x}^{x+h} g)$, where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy $Δ_2$. We characterize the pairs of positive functions (u,ω) such that the weak type inequality $u({x ∈ ℝ | M_{g}^{+}⨍(x) > λ}) ≤ C/(Φ(λ)) ʃ_ℝ Φ(|⨍|)ω$ holds for every ⨍ in the Orlicz space $L_Φ(ω)$. We also characterize the positive functions ω such that the integral inequality $ʃ_ℝ Φ(|M_{g}^{+}⨍|)ω ≤ ʃ_ℝ Φ(|⨍|)ω$ holds for every $⨍ ∈ L_Φ(ω)$. Our results include some already obtained for functions in $L^p$ and yield as consequences one-dimensional theorems due to Gallardo and Kerman-Torchinsky.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
one-sided maximal functions, weighted inequalities, weights, Orlicz spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Pedro Ortega Salvador 1
@article{10_4064_sm_131_2_101_114,
     author = {Pedro Ortega Salvador},
     title = {Weighted inequalities for one-sided maximal functions in {Orlicz} spaces},
     journal = {Studia Mathematica},
     pages = {101--114},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-131-2-101-114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-101-114/}
}
                      
                      
                    TY - JOUR AU - Pedro Ortega Salvador TI - Weighted inequalities for one-sided maximal functions in Orlicz spaces JO - Studia Mathematica PY - 1998 SP - 101 EP - 114 VL - 131 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-101-114/ DO - 10.4064/sm-131-2-101-114 LA - en ID - 10_4064_sm_131_2_101_114 ER -
%0 Journal Article %A Pedro Ortega Salvador %T Weighted inequalities for one-sided maximal functions in Orlicz spaces %J Studia Mathematica %D 1998 %P 101-114 %V 131 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-2-101-114/ %R 10.4064/sm-131-2-101-114 %G en %F 10_4064_sm_131_2_101_114
Pedro Ortega Salvador. Weighted inequalities for one-sided maximal functions in Orlicz spaces. Studia Mathematica, Tome 131 (1998) no. 2, pp. 101-114. doi: 10.4064/sm-131-2-101-114
Cité par Sources :
