The ratio and generating function of cogrowth coefficients of finitely generated groups
Studia Mathematica, Tome 131 (1998) no. 1, pp. 89-94
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let G be a group generated by r elements $g_1,…,g_r$. Among the reduced words in $g_1,…,g_r$ of length n some, say $γ_n$, represent the identity element of the group G. It has been shown in a combinatorial way that the 2nth root of $γ_{2n}$ has a limit, called the cogrowth exponent with respect to the generators $g_1,…,g_r$. We show by analytic methods that the numbers $γ_n$ vary regularly, i.e. the ratio $γ_{2n+2}/γ_{2n}$ is also convergent. Moreover, we derive new precise information on the domain of holomorphy of γ(z), the generating function associated with the coefficients $γ_n$.
@article{10_4064_sm_131_1_89_94,
author = {Ryszard Szwarc},
title = {The ratio and generating function of cogrowth coefficients of finitely generated groups},
journal = {Studia Mathematica},
pages = {89--94},
year = {1998},
volume = {131},
number = {1},
doi = {10.4064/sm-131-1-89-94},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-89-94/}
}
TY - JOUR AU - Ryszard Szwarc TI - The ratio and generating function of cogrowth coefficients of finitely generated groups JO - Studia Mathematica PY - 1998 SP - 89 EP - 94 VL - 131 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-89-94/ DO - 10.4064/sm-131-1-89-94 LA - en ID - 10_4064_sm_131_1_89_94 ER -
Ryszard Szwarc. The ratio and generating function of cogrowth coefficients of finitely generated groups. Studia Mathematica, Tome 131 (1998) no. 1, pp. 89-94. doi: 10.4064/sm-131-1-89-94
Cité par Sources :