Fragmentability and compactness in C(K)-spaces
Studia Mathematica, Tome 131 (1998) no. 1, pp. 73-87

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.
DOI : 10.4064/sm-131-1-73-87
Keywords: pointwise compactness, Radon-Nikodym compact spaces, fragmentability

B. Cascales 1

1
@article{10_4064_sm_131_1_73_87,
     author = {B. Cascales},
     title = {Fragmentability and compactness in {C(K)-spaces}},
     journal = {Studia Mathematica},
     pages = {73--87},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-131-1-73-87},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-73-87/}
}
TY  - JOUR
AU  - B. Cascales
TI  - Fragmentability and compactness in C(K)-spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 73
EP  - 87
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-73-87/
DO  - 10.4064/sm-131-1-73-87
LA  - en
ID  - 10_4064_sm_131_1_73_87
ER  - 
%0 Journal Article
%A B. Cascales
%T Fragmentability and compactness in C(K)-spaces
%J Studia Mathematica
%D 1998
%P 73-87
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-73-87/
%R 10.4064/sm-131-1-73-87
%G en
%F 10_4064_sm_131_1_73_87
B. Cascales. Fragmentability and compactness in C(K)-spaces. Studia Mathematica, Tome 131 (1998) no. 1, pp. 73-87. doi: 10.4064/sm-131-1-73-87

Cité par Sources :