On operators satisfying the Rockland condition
Studia Mathematica, Tome 131 (1998) no. 1, pp. 63-71

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.
DOI : 10.4064/sm-131-1-63-71

Waldemar Hebisch 1

1
@article{10_4064_sm_131_1_63_71,
     author = {Waldemar Hebisch},
     title = {On operators satisfying the {Rockland} condition},
     journal = {Studia Mathematica},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-131-1-63-71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-63-71/}
}
TY  - JOUR
AU  - Waldemar Hebisch
TI  - On operators satisfying the Rockland condition
JO  - Studia Mathematica
PY  - 1998
SP  - 63
EP  - 71
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-63-71/
DO  - 10.4064/sm-131-1-63-71
LA  - en
ID  - 10_4064_sm_131_1_63_71
ER  - 
%0 Journal Article
%A Waldemar Hebisch
%T On operators satisfying the Rockland condition
%J Studia Mathematica
%D 1998
%P 63-71
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-63-71/
%R 10.4064/sm-131-1-63-71
%G en
%F 10_4064_sm_131_1_63_71
Waldemar Hebisch. On operators satisfying the Rockland condition. Studia Mathematica, Tome 131 (1998) no. 1, pp. 63-71. doi: 10.4064/sm-131-1-63-71

Cité par Sources :