Metric unconditionality and Fourier analysis
Studia Mathematica, Tome 131 (1998) no. 1, pp. 19-62
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of "block unconditionality". Then we focus on translation invariant subspaces $L^{p}_{E}(
@article{10_4064_sm_131_1_19_62,
author = {Stefan Neuwirth},
title = {Metric unconditionality and {Fourier} analysis},
journal = {Studia Mathematica},
pages = {19--62},
publisher = {mathdoc},
volume = {131},
number = {1},
year = {1998},
doi = {10.4064/sm-131-1-19-62},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-19-62/}
}
Stefan Neuwirth. Metric unconditionality and Fourier analysis. Studia Mathematica, Tome 131 (1998) no. 1, pp. 19-62. doi: 10.4064/sm-131-1-19-62
Cité par Sources :