Metric unconditionality and Fourier analysis
Studia Mathematica, Tome 131 (1998) no. 1, pp. 19-62

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of "block unconditionality". Then we focus on translation invariant subspaces $L^{p}_{E}(
DOI : 10.4064/sm-131-1-19-62

Stefan Neuwirth 1

1
@article{10_4064_sm_131_1_19_62,
     author = {Stefan Neuwirth},
     title = {Metric unconditionality and {Fourier} analysis},
     journal = {Studia Mathematica},
     pages = {19--62},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-131-1-19-62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-19-62/}
}
TY  - JOUR
AU  - Stefan Neuwirth
TI  - Metric unconditionality and Fourier analysis
JO  - Studia Mathematica
PY  - 1998
SP  - 19
EP  - 62
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-19-62/
DO  - 10.4064/sm-131-1-19-62
LA  - en
ID  - 10_4064_sm_131_1_19_62
ER  - 
%0 Journal Article
%A Stefan Neuwirth
%T Metric unconditionality and Fourier analysis
%J Studia Mathematica
%D 1998
%P 19-62
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-131-1-19-62/
%R 10.4064/sm-131-1-19-62
%G en
%F 10_4064_sm_131_1_19_62
Stefan Neuwirth. Metric unconditionality and Fourier analysis. Studia Mathematica, Tome 131 (1998) no. 1, pp. 19-62. doi: 10.4064/sm-131-1-19-62

Cité par Sources :