A density theorem for algebra representations on the space (s)
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 130 (1998) no. 3, pp. 293-296
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We show that an arbitrary irreducible representation T of a real or complex algebra on the F-space (s), or, more generally, on an arbitrary infinite (topological) product of the field of scalars, is totally irreducible, provided its commutant is trivial. This provides an affirmative solution to a problem of Fell and Doran for representations on these spaces.
            
            
            
          
        
      @article{10_4064_sm_130_3_293_296,
     author = {W. \.Zelazko},
     title = {A density theorem for algebra representations on the space (s)},
     journal = {Studia Mathematica},
     pages = {293--296},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-130-3-293-296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-293-296/}
}
                      
                      
                    TY - JOUR AU - W. Żelazko TI - A density theorem for algebra representations on the space (s) JO - Studia Mathematica PY - 1998 SP - 293 EP - 296 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-293-296/ DO - 10.4064/sm-130-3-293-296 LA - en ID - 10_4064_sm_130_3_293_296 ER -
W. Żelazko. A density theorem for algebra representations on the space (s). Studia Mathematica, Tome 130 (1998) no. 3, pp. 293-296. doi: 10.4064/sm-130-3-293-296
Cité par Sources :
