A density theorem for algebra representations on the space (s)
Studia Mathematica, Tome 130 (1998) no. 3, pp. 293-296

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that an arbitrary irreducible representation T of a real or complex algebra on the F-space (s), or, more generally, on an arbitrary infinite (topological) product of the field of scalars, is totally irreducible, provided its commutant is trivial. This provides an affirmative solution to a problem of Fell and Doran for representations on these spaces.
DOI : 10.4064/sm-130-3-293-296

W. Żelazko 1

1
@article{10_4064_sm_130_3_293_296,
     author = {W. \.Zelazko},
     title = {A density theorem for algebra representations on the space (s)},
     journal = {Studia Mathematica},
     pages = {293--296},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-130-3-293-296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-293-296/}
}
TY  - JOUR
AU  - W. Żelazko
TI  - A density theorem for algebra representations on the space (s)
JO  - Studia Mathematica
PY  - 1998
SP  - 293
EP  - 296
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-293-296/
DO  - 10.4064/sm-130-3-293-296
LA  - en
ID  - 10_4064_sm_130_3_293_296
ER  - 
%0 Journal Article
%A W. Żelazko
%T A density theorem for algebra representations on the space (s)
%J Studia Mathematica
%D 1998
%P 293-296
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-293-296/
%R 10.4064/sm-130-3-293-296
%G en
%F 10_4064_sm_130_3_293_296
W. Żelazko. A density theorem for algebra representations on the space (s). Studia Mathematica, Tome 130 (1998) no. 3, pp. 293-296. doi: 10.4064/sm-130-3-293-296

Cité par Sources :