Time-dependent perturbation theory for abstract evolution equations of second order
Studia Mathematica, Tome 130 (1998) no. 3, pp. 263-274
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A condition on a family ${B(t):t ∈ [0,T]}$ of linear operators is given under which the inhomogeneous Cauchy problem for u"(t)=(A+ B(t))u(t) + f(t) for t ∈ [0,T] has a unique solution, where A is a linear operator satisfying the conditions characterizing infinitesimal generators of cosine families except the density of their domains. The result obtained is applied to the partial differential equation $$ u_{tt} = u_{xx} + b(t,x)u_x(t,x) + c(t,x)u(t,x) + f(t,x) for (t,x) ∈ [0,T]×[0,1], u(t,0) = u(t,1) = 0 for t ∈ [0,T], u(0,x) = u_0(x), u_t(0,x) = v_0(x) for x ∈ [0,1] $$ in the space of continuous functions on [0,1].
@article{10_4064_sm_130_3_263_274,
author = {Yuhua Lin},
title = {Time-dependent perturbation theory for abstract evolution equations of second order},
journal = {Studia Mathematica},
pages = {263--274},
year = {1998},
volume = {130},
number = {3},
doi = {10.4064/sm-130-3-263-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-263-274/}
}
TY - JOUR AU - Yuhua Lin TI - Time-dependent perturbation theory for abstract evolution equations of second order JO - Studia Mathematica PY - 1998 SP - 263 EP - 274 VL - 130 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-263-274/ DO - 10.4064/sm-130-3-263-274 LA - en ID - 10_4064_sm_130_3_263_274 ER -
Yuhua Lin. Time-dependent perturbation theory for abstract evolution equations of second order. Studia Mathematica, Tome 130 (1998) no. 3, pp. 263-274. doi: 10.4064/sm-130-3-263-274
Cité par Sources :