Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains
Studia Mathematica, Tome 130 (1998) no. 3, pp. 231-244
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.
Affiliations des auteurs :
Simeon Reich 1 ; David Shoikhet 1
@article{10_4064_sm_130_3_231_244,
author = {Simeon Reich and David Shoikhet},
title = {Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains},
journal = {Studia Mathematica},
pages = {231--244},
publisher = {mathdoc},
volume = {130},
number = {3},
year = {1998},
doi = {10.4064/sm-130-3-231-244},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-231-244/}
}
TY - JOUR AU - Simeon Reich AU - David Shoikhet TI - Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains JO - Studia Mathematica PY - 1998 SP - 231 EP - 244 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-231-244/ DO - 10.4064/sm-130-3-231-244 LA - en ID - 10_4064_sm_130_3_231_244 ER -
%0 Journal Article %A Simeon Reich %A David Shoikhet %T Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains %J Studia Mathematica %D 1998 %P 231-244 %V 130 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-231-244/ %R 10.4064/sm-130-3-231-244 %G en %F 10_4064_sm_130_3_231_244
Simeon Reich; David Shoikhet. Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains. Studia Mathematica, Tome 130 (1998) no. 3, pp. 231-244. doi: 10.4064/sm-130-3-231-244
Cité par Sources :