On complex interpolation and spectral continuity
Studia Mathematica, Tome 130 (1998) no. 3, pp. 223-229

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $[X_0,X_1]_t$, 0 ≤ t ≤ 1, be Banach spaces obtained via complex interpolation. With suitable hypotheses, linear operators T that act boundedly on both $X_0$ and $X_1$ will act boundedly on each $[X_0,X_1]_t$. Let $T_t$ denote such an operator when considered on $[X_0,X_1]_t$, and $σ(T_t)$ denote its spectrum. We are motivated by the question of whether or not the map $t → σ(T_t)$ is continuous on (0,1); this question remains open. In this paper, we study continuity of two related maps: $t → (σ(T_t))^∧$ (polynomially convex hull) and $t → ∂_e(σ(T_t))$ (boundary of the polynomially convex hull). We show that the first of these maps is always upper semicontinuous, and the second is always lower semicontinuous. Using an example from [5], we now have definitive information: $t → (σ(T_t))^∧$ is upper semicontinuous but not necessarily continuous, and $t → ∂_e(σ(T_t))$ is lower semicontinuous but not necessarily continuous.
DOI : 10.4064/sm-130-3-223-229

Karen Saxe 1

1
@article{10_4064_sm_130_3_223_229,
     author = {Karen Saxe},
     title = {On complex interpolation and spectral continuity},
     journal = {Studia Mathematica},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-130-3-223-229},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-223-229/}
}
TY  - JOUR
AU  - Karen Saxe
TI  - On complex interpolation and spectral continuity
JO  - Studia Mathematica
PY  - 1998
SP  - 223
EP  - 229
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-223-229/
DO  - 10.4064/sm-130-3-223-229
LA  - en
ID  - 10_4064_sm_130_3_223_229
ER  - 
%0 Journal Article
%A Karen Saxe
%T On complex interpolation and spectral continuity
%J Studia Mathematica
%D 1998
%P 223-229
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-223-229/
%R 10.4064/sm-130-3-223-229
%G en
%F 10_4064_sm_130_3_223_229
Karen Saxe. On complex interpolation and spectral continuity. Studia Mathematica, Tome 130 (1998) no. 3, pp. 223-229. doi: 10.4064/sm-130-3-223-229

Cité par Sources :