On the growth of averaged Weyl sums for rigid rotations
Studia Mathematica, Tome 130 (1998) no. 3, pp. 199-212
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ω ∈ ℝ╲ℚ and $f ∈ L^2(\mathbb S^1)$ of zero average. We study the asymptotic behaviour of the Weyl sums $S(m,\omega)f(x)=\sum_{k=0}^{m-1}f(x+k\omega)$ and their averages $\widehat S(m,\omega)f(x)=\frac1m\sum_{j=1}^{m}S(j,\omega)f(x)$, in the $L^2$-norm. In particular, for a suitable class of Liouville rotation numbers $\omega\in\mathbb R\setminus\mathbb Q$, we are able to construct examples of functions $f\in H^s(\mathbb S^1)$, $s>0$, such that, for all $\varepsilon>0$, $\|\widehat S(m,\omega)f\|_2\ge C_\varepsilon m^{1/(1+s)-\varepsilon}$ as $m\to\infty$. We show in addition that, for all $f\in H^s(\mathbb S^1)$, $\liminf m^{-1/(1+s)}(\log m)^{-1/2}\|\hat S(m,\omega)f\|_2\infty$ for all $\omega\in\mathbb R\setminus\mathbb Q$.
@article{10_4064_sm_130_3_199_212,
author = {S. de Bi\`evre and G. Forni},
title = {On the growth of averaged {Weyl} sums for rigid rotations},
journal = {Studia Mathematica},
pages = {199--212},
publisher = {mathdoc},
volume = {130},
number = {3},
year = {1998},
doi = {10.4064/sm-130-3-199-212},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-199-212/}
}
TY - JOUR AU - S. de Bièvre AU - G. Forni TI - On the growth of averaged Weyl sums for rigid rotations JO - Studia Mathematica PY - 1998 SP - 199 EP - 212 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-199-212/ DO - 10.4064/sm-130-3-199-212 LA - en ID - 10_4064_sm_130_3_199_212 ER -
S. de Bièvre; G. Forni. On the growth of averaged Weyl sums for rigid rotations. Studia Mathematica, Tome 130 (1998) no. 3, pp. 199-212. doi: 10.4064/sm-130-3-199-212
Cité par Sources :