On the growth of averaged Weyl sums for rigid rotations
Studia Mathematica, Tome 130 (1998) no. 3, pp. 199-212

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ω ∈ ℝ╲ℚ and $f ∈ L^2(\mathbb S^1)$ of zero average. We study the asymptotic behaviour of the Weyl sums $S(m,\omega)f(x)=\sum_{k=0}^{m-1}f(x+k\omega)$ and their averages $\widehat S(m,\omega)f(x)=\frac1m\sum_{j=1}^{m}S(j,\omega)f(x)$, in the $L^2$-norm. In particular, for a suitable class of Liouville rotation numbers $\omega\in\mathbb R\setminus\mathbb Q$, we are able to construct examples of functions $f\in H^s(\mathbb S^1)$, $s>0$, such that, for all $\varepsilon>0$, $\|\widehat S(m,\omega)f\|_2\ge C_\varepsilon m^{1/(1+s)-\varepsilon}$ as $m\to\infty$. We show in addition that, for all $f\in H^s(\mathbb S^1)$, $\liminf m^{-1/(1+s)}(\log m)^{-1/2}\|\hat S(m,\omega)f\|_2\infty$ for all $\omega\in\mathbb R\setminus\mathbb Q$.
DOI : 10.4064/sm-130-3-199-212

S. de Bièvre 1 ; G. Forni 1

1
@article{10_4064_sm_130_3_199_212,
     author = {S. de Bi\`evre and G. Forni},
     title = {On the growth of averaged {Weyl} sums for rigid rotations},
     journal = {Studia Mathematica},
     pages = {199--212},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-130-3-199-212},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-199-212/}
}
TY  - JOUR
AU  - S. de Bièvre
AU  - G. Forni
TI  - On the growth of averaged Weyl sums for rigid rotations
JO  - Studia Mathematica
PY  - 1998
SP  - 199
EP  - 212
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-199-212/
DO  - 10.4064/sm-130-3-199-212
LA  - en
ID  - 10_4064_sm_130_3_199_212
ER  - 
%0 Journal Article
%A S. de Bièvre
%A G. Forni
%T On the growth of averaged Weyl sums for rigid rotations
%J Studia Mathematica
%D 1998
%P 199-212
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-3-199-212/
%R 10.4064/sm-130-3-199-212
%G en
%F 10_4064_sm_130_3_199_212
S. de Bièvre; G. Forni. On the growth of averaged Weyl sums for rigid rotations. Studia Mathematica, Tome 130 (1998) no. 3, pp. 199-212. doi: 10.4064/sm-130-3-199-212

Cité par Sources :