On Denjoy-Dunford and Denjoy-Pettis integrals
Studia Mathematica, Tome 130 (1998) no. 2, pp. 115-133
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function $f : [a,b] → c_0$ which is not Pettis integrable on any subinterval in [a,b], while $ʃ_J f$ belongs to $c_0$ for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord and Denjoy-Pettis integrals are studied.
Affiliations des auteurs :
José L. Gámez 1 ; José Mendoza 1
@article{10_4064_sm_130_2_115_133,
author = {Jos\'e L. G\'amez and Jos\'e Mendoza},
title = {On {Denjoy-Dunford} and {Denjoy-Pettis} integrals},
journal = {Studia Mathematica},
pages = {115--133},
publisher = {mathdoc},
volume = {130},
number = {2},
year = {1998},
doi = {10.4064/sm-130-2-115-133},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-115-133/}
}
TY - JOUR AU - José L. Gámez AU - José Mendoza TI - On Denjoy-Dunford and Denjoy-Pettis integrals JO - Studia Mathematica PY - 1998 SP - 115 EP - 133 VL - 130 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-115-133/ DO - 10.4064/sm-130-2-115-133 LA - en ID - 10_4064_sm_130_2_115_133 ER -
José L. Gámez; José Mendoza. On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Mathematica, Tome 130 (1998) no. 2, pp. 115-133. doi: 10.4064/sm-130-2-115-133
Cité par Sources :