On Denjoy-Dunford and Denjoy-Pettis integrals
Studia Mathematica, Tome 130 (1998) no. 2, pp. 115-133

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function $f : [a,b] → c_0$ which is not Pettis integrable on any subinterval in [a,b], while $ʃ_J f$ belongs to $c_0$ for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord and Denjoy-Pettis integrals are studied.
DOI : 10.4064/sm-130-2-115-133

José L. Gámez 1 ; José Mendoza 1

1
@article{10_4064_sm_130_2_115_133,
     author = {Jos\'e L.  G\'amez and Jos\'e Mendoza},
     title = {On {Denjoy-Dunford} and {Denjoy-Pettis} integrals},
     journal = {Studia Mathematica},
     pages = {115--133},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-130-2-115-133},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-115-133/}
}
TY  - JOUR
AU  - José L.  Gámez
AU  - José Mendoza
TI  - On Denjoy-Dunford and Denjoy-Pettis integrals
JO  - Studia Mathematica
PY  - 1998
SP  - 115
EP  - 133
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-115-133/
DO  - 10.4064/sm-130-2-115-133
LA  - en
ID  - 10_4064_sm_130_2_115_133
ER  - 
%0 Journal Article
%A José L.  Gámez
%A José Mendoza
%T On Denjoy-Dunford and Denjoy-Pettis integrals
%J Studia Mathematica
%D 1998
%P 115-133
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-2-115-133/
%R 10.4064/sm-130-2-115-133
%G en
%F 10_4064_sm_130_2_115_133
José L.  Gámez; José Mendoza. On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Mathematica, Tome 130 (1998) no. 2, pp. 115-133. doi: 10.4064/sm-130-2-115-133

Cité par Sources :