α-Equivalence
Studia Mathematica, Tome 130 (1998) no. 1, pp. 9-21

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define the α - relations between discrete systems and between continuous systems. We show that it is an equivalence relation. α- Equivalence vs. even α-equivalence is analogous to Kakutani equivalence vs. even Kakutani equivalence.
DOI : 10.4064/sm-130-1-9-21

Kyewon Koh Park 1

1
@article{10_4064_sm_130_1_9_21,
     author = {Kyewon Koh Park},
     title = {\ensuremath{\alpha}-Equivalence},
     journal = {Studia Mathematica},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-130-1-9-21},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-9-21/}
}
TY  - JOUR
AU  - Kyewon Koh Park
TI  - α-Equivalence
JO  - Studia Mathematica
PY  - 1998
SP  - 9
EP  - 21
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-9-21/
DO  - 10.4064/sm-130-1-9-21
LA  - fr
ID  - 10_4064_sm_130_1_9_21
ER  - 
%0 Journal Article
%A Kyewon Koh Park
%T α-Equivalence
%J Studia Mathematica
%D 1998
%P 9-21
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-9-21/
%R 10.4064/sm-130-1-9-21
%G fr
%F 10_4064_sm_130_1_9_21
Kyewon Koh Park. α-Equivalence. Studia Mathematica, Tome 130 (1998) no. 1, pp. 9-21. doi: 10.4064/sm-130-1-9-21

Cité par Sources :