Hull-minimal ideals in the Schwartz algebra of the Heisenberg group
Studia Mathematica, Tome 130 (1998) no. 1, pp. 77-98
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For every closed subset C in the dual space $Ĥ_n$ of the Heisenberg group $H_n$ we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra $S(H_n)$ and we show that in general for two closed subsets $C_1, C_2$ of $Ĥ_n$ the product of $j(C_1)$ and $j(C_2)$ is different from $j(C_1∩C_2)$.
@article{10_4064_sm_130_1_77_98,
author = {J. Ludwig},
title = {Hull-minimal ideals in the {Schwartz} algebra of the {Heisenberg} group},
journal = {Studia Mathematica},
pages = {77--98},
publisher = {mathdoc},
volume = {130},
number = {1},
year = {1998},
doi = {10.4064/sm-130-1-77-98},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-77-98/}
}
TY - JOUR AU - J. Ludwig TI - Hull-minimal ideals in the Schwartz algebra of the Heisenberg group JO - Studia Mathematica PY - 1998 SP - 77 EP - 98 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-77-98/ DO - 10.4064/sm-130-1-77-98 LA - de ID - 10_4064_sm_130_1_77_98 ER -
J. Ludwig. Hull-minimal ideals in the Schwartz algebra of the Heisenberg group. Studia Mathematica, Tome 130 (1998) no. 1, pp. 77-98. doi: 10.4064/sm-130-1-77-98
Cité par Sources :