Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$
Studia Mathematica, Tome 130 (1998) no. 1, pp. 53-65

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a hypersurface $x_n = Ꮁ(x_1...,x_{n-1})$ in $ℝ^n$, where Ꮁ is homogeneous of degree d>0, we define the two-parameter maximal operator $$Mf(x) = sup_{a,b>0} ∫_{s∈ℝ^{n-1},|s| 1} |f(x - (as, bᎱ(s)))|ds.$$ We prove that if d ≠ 1 and the hypersurface has non-vanishing Gaussian curvature away from the origin, then M is bounded on $L^p$ if and only if p>n/(n-1). If d = 1, i.e. if the surface is a cone, the same conclusion holds in dimension n ≥ 3 if the surface has n-1 non-vanishing principal curvatures away from the origin and it intersects the hyperplane $x_n = 0$ only at the origin.
DOI : 10.4064/sm-130-1-53-65

Gianfranco Marletta 1 ; Fulvio Ricci 1

1
@article{10_4064_sm_130_1_53_65,
     author = {Gianfranco Marletta and Fulvio Ricci},
     title = {Two-parameter maximal functions associated with homogeneous surfaces in $\ensuremath{\mathbb{R}}^n$},
     journal = {Studia Mathematica},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-130-1-53-65},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-53-65/}
}
TY  - JOUR
AU  - Gianfranco Marletta
AU  - Fulvio Ricci
TI  - Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$
JO  - Studia Mathematica
PY  - 1998
SP  - 53
EP  - 65
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-53-65/
DO  - 10.4064/sm-130-1-53-65
LA  - en
ID  - 10_4064_sm_130_1_53_65
ER  - 
%0 Journal Article
%A Gianfranco Marletta
%A Fulvio Ricci
%T Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$
%J Studia Mathematica
%D 1998
%P 53-65
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-53-65/
%R 10.4064/sm-130-1-53-65
%G en
%F 10_4064_sm_130_1_53_65
Gianfranco Marletta; Fulvio Ricci. Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$. Studia Mathematica, Tome 130 (1998) no. 1, pp. 53-65. doi: 10.4064/sm-130-1-53-65

Cité par Sources :