Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 130 (1998) no. 1, pp. 53-65
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Given a hypersurface $x_n = Ꮁ(x_1...,x_{n-1})$ in $ℝ^n$, where Ꮁ is homogeneous of degree d>0, we define the two-parameter maximal operator $$Mf(x) = sup_{a,b>0} ∫_{s∈ℝ^{n-1},|s|  1}  |f(x - (as, bᎱ(s)))|ds.$$ We prove that if d ≠ 1 and the hypersurface has non-vanishing Gaussian curvature away from the origin, then M is bounded on $L^p$ if and only if p>n/(n-1). If d = 1, i.e. if the surface is a cone, the same conclusion holds in dimension n ≥ 3 if the surface has n-1 non-vanishing principal curvatures away from the origin and it intersects the hyperplane $x_n = 0$ only at the origin.
            
            
            
          
        
      
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Gianfranco Marletta 1 ; Fulvio Ricci 1
@article{10_4064_sm_130_1_53_65,
     author = {Gianfranco Marletta and Fulvio Ricci},
     title = {Two-parameter maximal functions associated with homogeneous surfaces in $\ensuremath{\mathbb{R}}^n$},
     journal = {Studia Mathematica},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-130-1-53-65},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-53-65/}
}
                      
                      
                    TY - JOUR AU - Gianfranco Marletta AU - Fulvio Ricci TI - Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$ JO - Studia Mathematica PY - 1998 SP - 53 EP - 65 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-53-65/ DO - 10.4064/sm-130-1-53-65 LA - en ID - 10_4064_sm_130_1_53_65 ER -
%0 Journal Article %A Gianfranco Marletta %A Fulvio Ricci %T Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$ %J Studia Mathematica %D 1998 %P 53-65 %V 130 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-53-65/ %R 10.4064/sm-130-1-53-65 %G en %F 10_4064_sm_130_1_53_65
Gianfranco Marletta; Fulvio Ricci. Two-parameter maximal functions associated with homogeneous surfaces in $ℝ^n$. Studia Mathematica, Tome 130 (1998) no. 1, pp. 53-65. doi: 10.4064/sm-130-1-53-65
Cité par Sources :
