On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space
Studia Mathematica, Tome 130 (1998) no. 1, pp. 1-7

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.
DOI : 10.4064/sm-130-1-1-7
Keywords: dissipative operators, local spectrum, semigroup of contraction operators

Driss Drissi 1

1
@article{10_4064_sm_130_1_1_7,
     author = {Driss Drissi},
     title = {On a generalization of {Lumer-Phillips'} theorem for dissipative operators in a {Banach} space},
     journal = {Studia Mathematica},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-130-1-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-1-7/}
}
TY  - JOUR
AU  - Driss Drissi
TI  - On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space
JO  - Studia Mathematica
PY  - 1998
SP  - 1
EP  - 7
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-1-7/
DO  - 10.4064/sm-130-1-1-7
LA  - en
ID  - 10_4064_sm_130_1_1_7
ER  - 
%0 Journal Article
%A Driss Drissi
%T On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space
%J Studia Mathematica
%D 1998
%P 1-7
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-1-7/
%R 10.4064/sm-130-1-1-7
%G en
%F 10_4064_sm_130_1_1_7
Driss Drissi. On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space. Studia Mathematica, Tome 130 (1998) no. 1, pp. 1-7. doi: 10.4064/sm-130-1-1-7

Cité par Sources :