On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space
Studia Mathematica, Tome 130 (1998) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.
Keywords:
dissipative operators, local spectrum, semigroup of contraction operators
@article{10_4064_sm_130_1_1_7,
author = {Driss Drissi},
title = {On a generalization of {Lumer-Phillips'} theorem for dissipative operators in a {Banach} space},
journal = {Studia Mathematica},
pages = {1--7},
year = {1998},
volume = {130},
number = {1},
doi = {10.4064/sm-130-1-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-1-7/}
}
TY - JOUR AU - Driss Drissi TI - On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space JO - Studia Mathematica PY - 1998 SP - 1 EP - 7 VL - 130 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-130-1-1-7/ DO - 10.4064/sm-130-1-1-7 LA - en ID - 10_4064_sm_130_1_1_7 ER -
Driss Drissi. On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space. Studia Mathematica, Tome 130 (1998) no. 1, pp. 1-7. doi: 10.4064/sm-130-1-1-7
Cité par Sources :