Extremal perturbations of semi-Fredholm operators
Studia Mathematica, Tome 129 (1998) no. 3, pp. 253-264
Let T be a bounded operator on an infinite-dimensional Banach space X and Ω a compact subset of the semi-Fredholm domain of T. We construct a finite rank perturbation F such that min[dim N(T+F-λ), codim R(T+F-λ)] = 0 for all λ ∈ Ω, and which is extremal in the sense that F² = 0 and rank F = max{min[dim N(T-λ), codim R(T-λ)] : λ ∈ Ω.
@article{10_4064_sm_129_3_253_264,
author = {Thorsten Kr\"oncke},
title = {Extremal perturbations of {semi-Fredholm} operators},
journal = {Studia Mathematica},
pages = {253--264},
year = {1998},
volume = {129},
number = {3},
doi = {10.4064/sm-129-3-253-264},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-253-264/}
}
Thorsten Kröncke. Extremal perturbations of semi-Fredholm operators. Studia Mathematica, Tome 129 (1998) no. 3, pp. 253-264. doi: 10.4064/sm-129-3-253-264
Cité par Sources :