Extremal perturbations of semi-Fredholm operators
Studia Mathematica, Tome 129 (1998) no. 3, pp. 253-264

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let T be a bounded operator on an infinite-dimensional Banach space X and Ω a compact subset of the semi-Fredholm domain of T. We construct a finite rank perturbation F such that min[dim N(T+F-λ), codim R(T+F-λ)] = 0 for all λ ∈ Ω, and which is extremal in the sense that F² = 0 and rank F = max{min[dim N(T-λ), codim R(T-λ)] : λ ∈ Ω.
DOI : 10.4064/sm-129-3-253-264

Thorsten Kröncke 1

1
@article{10_4064_sm_129_3_253_264,
     author = {Thorsten Kr\"oncke},
     title = {Extremal perturbations of {semi-Fredholm} operators},
     journal = {Studia Mathematica},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-129-3-253-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-253-264/}
}
TY  - JOUR
AU  - Thorsten Kröncke
TI  - Extremal perturbations of semi-Fredholm operators
JO  - Studia Mathematica
PY  - 1998
SP  - 253
EP  - 264
VL  - 129
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-253-264/
DO  - 10.4064/sm-129-3-253-264
LA  - en
ID  - 10_4064_sm_129_3_253_264
ER  - 
%0 Journal Article
%A Thorsten Kröncke
%T Extremal perturbations of semi-Fredholm operators
%J Studia Mathematica
%D 1998
%P 253-264
%V 129
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-253-264/
%R 10.4064/sm-129-3-253-264
%G en
%F 10_4064_sm_129_3_253_264
Thorsten Kröncke. Extremal perturbations of semi-Fredholm operators. Studia Mathematica, Tome 129 (1998) no. 3, pp. 253-264. doi: 10.4064/sm-129-3-253-264

Cité par Sources :