Extremal perturbations of semi-Fredholm operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 129 (1998) no. 3, pp. 253-264
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let T be a bounded operator on an infinite-dimensional Banach space X and Ω a compact subset of the semi-Fredholm domain of T. We construct a finite rank perturbation F such that min[dim N(T+F-λ), codim R(T+F-λ)] = 0 for all λ ∈ Ω, and which is extremal in the sense that F² = 0 and rank F = max{min[dim N(T-λ), codim R(T-λ)] : λ ∈ Ω.
            
            
            
          
        
      @article{10_4064_sm_129_3_253_264,
     author = {Thorsten Kr\"oncke},
     title = {Extremal perturbations of {semi-Fredholm} operators},
     journal = {Studia Mathematica},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-129-3-253-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-253-264/}
}
                      
                      
                    TY - JOUR AU - Thorsten Kröncke TI - Extremal perturbations of semi-Fredholm operators JO - Studia Mathematica PY - 1998 SP - 253 EP - 264 VL - 129 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-253-264/ DO - 10.4064/sm-129-3-253-264 LA - en ID - 10_4064_sm_129_3_253_264 ER -
Thorsten Kröncke. Extremal perturbations of semi-Fredholm operators. Studia Mathematica, Tome 129 (1998) no. 3, pp. 253-264. doi: 10.4064/sm-129-3-253-264
Cité par Sources :
