Isometric embedding into spaces of continuous functions
Studia Mathematica, Tome 129 (1998) no. 3, pp. 197-205
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between $C_0(α+1)$ and $C_0(β+1)$.
@article{10_4064_sm_129_3_197_205,
author = {Rafael Villa},
title = {Isometric embedding into spaces of continuous functions},
journal = {Studia Mathematica},
pages = {197--205},
year = {1998},
volume = {129},
number = {3},
doi = {10.4064/sm-129-3-197-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-3-197-205/}
}
Rafael Villa. Isometric embedding into spaces of continuous functions. Studia Mathematica, Tome 129 (1998) no. 3, pp. 197-205. doi: 10.4064/sm-129-3-197-205
Cité par Sources :