The Grothendieck-Pietsch domination principle for nonlinear summing integral operators
Studia Mathematica, Tome 129 (1998) no. 2, pp. 97-112

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We transform the concept of p-summing operators, 1≤ p ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
DOI : 10.4064/sm-129-2-97-112

Karl Lermer 1

1
@article{10_4064_sm_129_2_97_112,
     author = {Karl Lermer},
     title = {The {Grothendieck-Pietsch} domination principle for nonlinear summing integral operators},
     journal = {Studia Mathematica},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-129-2-97-112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-97-112/}
}
TY  - JOUR
AU  - Karl Lermer
TI  - The Grothendieck-Pietsch domination principle for nonlinear summing integral operators
JO  - Studia Mathematica
PY  - 1998
SP  - 97
EP  - 112
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-97-112/
DO  - 10.4064/sm-129-2-97-112
LA  - en
ID  - 10_4064_sm_129_2_97_112
ER  - 
%0 Journal Article
%A Karl Lermer
%T The Grothendieck-Pietsch domination principle for nonlinear summing integral operators
%J Studia Mathematica
%D 1998
%P 97-112
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-97-112/
%R 10.4064/sm-129-2-97-112
%G en
%F 10_4064_sm_129_2_97_112
Karl Lermer. The Grothendieck-Pietsch domination principle for nonlinear summing integral operators. Studia Mathematica, Tome 129 (1998) no. 2, pp. 97-112. doi: 10.4064/sm-129-2-97-112

Cité par Sources :