An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
Studia Mathematica, Tome 129 (1998) no. 2, pp. 185-196

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

C.-M. Cho and W. B. Johnson showed that if a subspace E of $ℓ_p$, 1 p ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with $r^2 + s^2 1$, the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)^{⊥} satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of upper p-spaces (e.g. Lorentz sequence spaces d(w, p) and certain renormings of $L^p$).
DOI : 10.4064/sm-129-2-185-196

J. C. Cabello 1

1
@article{10_4064_sm_129_2_185_196,
     author = {J. C. Cabello},
     title = {An ideal characterization of when a subspace of certain {Banach} spaces has the metric compact approximation property},
     journal = {Studia Mathematica},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-129-2-185-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-185-196/}
}
TY  - JOUR
AU  - J. C. Cabello
TI  - An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
JO  - Studia Mathematica
PY  - 1998
SP  - 185
EP  - 196
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-185-196/
DO  - 10.4064/sm-129-2-185-196
LA  - en
ID  - 10_4064_sm_129_2_185_196
ER  - 
%0 Journal Article
%A J. C. Cabello
%T An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
%J Studia Mathematica
%D 1998
%P 185-196
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-185-196/
%R 10.4064/sm-129-2-185-196
%G en
%F 10_4064_sm_129_2_185_196
J. C. Cabello. An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property. Studia Mathematica, Tome 129 (1998) no. 2, pp. 185-196. doi: 10.4064/sm-129-2-185-196

Cité par Sources :