Mapping properties of integral averaging operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 129 (1998) no. 2, pp. 157-177
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Characterizations are obtained for those pairs of weight functions u and v for which the operators $Tf(x) = ʃ_{a(x)}^{b(x)} f(t)dt$ with a and b certain non-negative functions are bounded from $L^p_u(0,∞)$ to $L^q_v(0,∞)$, 0  p,q  ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integral averaging operator, weight characterizations, Hardy inequalities, Steklov operator, differences
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              H. P. Heinig 1 ;  1
@article{10_4064_sm_129_2_157_177,
     author = {H. P.  Heinig and  },
     title = {Mapping properties of integral averaging operators},
     journal = {Studia Mathematica},
     pages = {157--177},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-129-2-157-177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-157-177/}
}
                      
                      
                    TY - JOUR AU - H. P. Heinig AU - TI - Mapping properties of integral averaging operators JO - Studia Mathematica PY - 1998 SP - 157 EP - 177 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-157-177/ DO - 10.4064/sm-129-2-157-177 LA - en ID - 10_4064_sm_129_2_157_177 ER -
H. P. Heinig; . Mapping properties of integral averaging operators. Studia Mathematica, Tome 129 (1998) no. 2, pp. 157-177. doi: 10.4064/sm-129-2-157-177
Cité par Sources :
