Mapping properties of integral averaging operators
Studia Mathematica, Tome 129 (1998) no. 2, pp. 157-177

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Characterizations are obtained for those pairs of weight functions u and v for which the operators $Tf(x) = ʃ_{a(x)}^{b(x)} f(t)dt$ with a and b certain non-negative functions are bounded from $L^p_u(0,∞)$ to $L^q_v(0,∞)$, 0 p,q ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.
DOI : 10.4064/sm-129-2-157-177
Keywords: integral averaging operator, weight characterizations, Hardy inequalities, Steklov operator, differences

H. P. Heinig 1 ;  1

1
@article{10_4064_sm_129_2_157_177,
     author = {H. P.  Heinig and  },
     title = {Mapping properties of integral averaging operators},
     journal = {Studia Mathematica},
     pages = {157--177},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-129-2-157-177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-157-177/}
}
TY  - JOUR
AU  - H. P.  Heinig
AU  -  
TI  - Mapping properties of integral averaging operators
JO  - Studia Mathematica
PY  - 1998
SP  - 157
EP  - 177
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-157-177/
DO  - 10.4064/sm-129-2-157-177
LA  - en
ID  - 10_4064_sm_129_2_157_177
ER  - 
%0 Journal Article
%A H. P.  Heinig
%A  
%T Mapping properties of integral averaging operators
%J Studia Mathematica
%D 1998
%P 157-177
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-157-177/
%R 10.4064/sm-129-2-157-177
%G en
%F 10_4064_sm_129_2_157_177
H. P.  Heinig;  . Mapping properties of integral averaging operators. Studia Mathematica, Tome 129 (1998) no. 2, pp. 157-177. doi: 10.4064/sm-129-2-157-177

Cité par Sources :