On analytic semigroups and cosine functions in Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 129 (1998) no. 2, pp. 137-156
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              If A generates a bounded cosine function on a Banach space X then the negative square root B of A generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by B. The characterization relies on new results on the inversion of the vector-valued conjugate potential transform.
            
            
            
          
        
      @article{10_4064_sm_129_2_137_156,
     author = {V. Keyantuo and  },
     title = {On analytic semigroups and cosine functions in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {137--156},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-129-2-137-156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-137-156/}
}
                      
                      
                    TY - JOUR AU - V. Keyantuo AU - TI - On analytic semigroups and cosine functions in Banach spaces JO - Studia Mathematica PY - 1998 SP - 137 EP - 156 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-129-2-137-156/ DO - 10.4064/sm-129-2-137-156 LA - en ID - 10_4064_sm_129_2_137_156 ER -
V. Keyantuo; . On analytic semigroups and cosine functions in Banach spaces. Studia Mathematica, Tome 129 (1998) no. 2, pp. 137-156. doi: 10.4064/sm-129-2-137-156
Cité par Sources :
