Finite rank elements in semisimple Banach algebras
Studia Mathematica, Tome 128 (1998) no. 3, pp. 287-298
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.
@article{10_4064_sm_128_3_287_298,
author = {Matej Bre\v{s}ar and },
title = {Finite rank elements in semisimple {Banach} algebras},
journal = {Studia Mathematica},
pages = {287--298},
year = {1998},
volume = {128},
number = {3},
doi = {10.4064/sm-128-3-287-298},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-287-298/}
}
Matej Brešar; . Finite rank elements in semisimple Banach algebras. Studia Mathematica, Tome 128 (1998) no. 3, pp. 287-298. doi: 10.4064/sm-128-3-287-298
Cité par Sources :