Finite rank elements in semisimple Banach algebras
Studia Mathematica, Tome 128 (1998) no. 3, pp. 287-298

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.
DOI : 10.4064/sm-128-3-287-298

Matej Brešar 1 ;  1

1
@article{10_4064_sm_128_3_287_298,
     author = {Matej Bre\v{s}ar and  },
     title = {Finite rank elements in semisimple {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {287--298},
     publisher = {mathdoc},
     volume = {128},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-128-3-287-298},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-287-298/}
}
TY  - JOUR
AU  - Matej Brešar
AU  -  
TI  - Finite rank elements in semisimple Banach algebras
JO  - Studia Mathematica
PY  - 1998
SP  - 287
EP  - 298
VL  - 128
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-287-298/
DO  - 10.4064/sm-128-3-287-298
LA  - de
ID  - 10_4064_sm_128_3_287_298
ER  - 
%0 Journal Article
%A Matej Brešar
%A  
%T Finite rank elements in semisimple Banach algebras
%J Studia Mathematica
%D 1998
%P 287-298
%V 128
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-287-298/
%R 10.4064/sm-128-3-287-298
%G de
%F 10_4064_sm_128_3_287_298
Matej Brešar;  . Finite rank elements in semisimple Banach algebras. Studia Mathematica, Tome 128 (1998) no. 3, pp. 287-298. doi: 10.4064/sm-128-3-287-298

Cité par Sources :