Finite rank elements in semisimple Banach algebras
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 128 (1998) no. 3, pp. 287-298
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let A be a semisimple Banach algebra. We define the rank of a nonzero element a in the socle of A to be the minimum of the number of minimal left ideals whose sum contains a. Several characterizations of rank are proved.
            
            
            
          
        
      @article{10_4064_sm_128_3_287_298,
     author = {Matej Bre\v{s}ar and  },
     title = {Finite rank elements in semisimple {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {287--298},
     publisher = {mathdoc},
     volume = {128},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-128-3-287-298},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-287-298/}
}
                      
                      
                    TY - JOUR AU - Matej Brešar AU - TI - Finite rank elements in semisimple Banach algebras JO - Studia Mathematica PY - 1998 SP - 287 EP - 298 VL - 128 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-287-298/ DO - 10.4064/sm-128-3-287-298 LA - de ID - 10_4064_sm_128_3_287_298 ER -
Matej Brešar; . Finite rank elements in semisimple Banach algebras. Studia Mathematica, Tome 128 (1998) no. 3, pp. 287-298. doi: 10.4064/sm-128-3-287-298
Cité par Sources :
