Maximal functions and smoothness spaces in $L_{p}(ℝ^{d})
Studia Mathematica, Tome 128 (1998) no. 3, pp. 219-241
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces $C^α_p(ℝ^d)$, 0 p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the $C^α_p(ℝ^d)$ spaces in terms of the coefficients of wavelet decompositions.
Keywords:
maximal functions, approximation by operators, wavelets, smoothness spaces
Affiliations des auteurs :
G. C. Kyriazis 1
@article{10_4064_sm_128_3_219_241,
author = {G. C. Kyriazis},
title = {Maximal functions and smoothness spaces in $L_{p}(\ensuremath{\mathbb{R}}^{d})},
journal = {Studia Mathematica},
pages = {219--241},
publisher = {mathdoc},
volume = {128},
number = {3},
year = {1998},
doi = {10.4064/sm-128-3-219-241},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-219-241/}
}
TY - JOUR
AU - G. C. Kyriazis
TI - Maximal functions and smoothness spaces in $L_{p}(ℝ^{d})
JO - Studia Mathematica
PY - 1998
SP - 219
EP - 241
VL - 128
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-219-241/
DO - 10.4064/sm-128-3-219-241
LA - en
ID - 10_4064_sm_128_3_219_241
ER -
G. C. Kyriazis. Maximal functions and smoothness spaces in $L_{p}(ℝ^{d}). Studia Mathematica, Tome 128 (1998) no. 3, pp. 219-241. doi: 10.4064/sm-128-3-219-241
Cité par Sources :