Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains
Studia Mathematica, Tome 128 (1998) no. 3, pp. 199-218
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a sort of "local" Morrey spaces and show an existence and uniqueness theorem for the Dirichlet problem in unbounded domains for linear second order elliptic partial differential equations with principal coefficients "close" to functions having derivatives in such spaces.
Affiliations des auteurs :
Anna Canale 1 ;  1 ;  1
@article{10_4064_sm_128_3_199_218,
author = {Anna Canale and and },
title = {Functions with derivatives in spaces of {Morrey} type and elliptic equations in unbounded domains},
journal = {Studia Mathematica},
pages = {199--218},
publisher = {mathdoc},
volume = {128},
number = {3},
year = {1998},
doi = {10.4064/sm-128-3-199-218},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-199-218/}
}
TY - JOUR AU - Anna Canale AU - AU - TI - Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains JO - Studia Mathematica PY - 1998 SP - 199 EP - 218 VL - 128 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-199-218/ DO - 10.4064/sm-128-3-199-218 LA - en ID - 10_4064_sm_128_3_199_218 ER -
%0 Journal Article %A Anna Canale %A %A %T Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains %J Studia Mathematica %D 1998 %P 199-218 %V 128 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-199-218/ %R 10.4064/sm-128-3-199-218 %G en %F 10_4064_sm_128_3_199_218
Anna Canale; ; . Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains. Studia Mathematica, Tome 128 (1998) no. 3, pp. 199-218. doi: 10.4064/sm-128-3-199-218
Cité par Sources :