Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains
Studia Mathematica, Tome 128 (1998) no. 3, pp. 199-218

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a sort of "local" Morrey spaces and show an existence and uniqueness theorem for the Dirichlet problem in unbounded domains for linear second order elliptic partial differential equations with principal coefficients "close" to functions having derivatives in such spaces.
DOI : 10.4064/sm-128-3-199-218

Anna Canale 1 ;  1 ;  1

1
@article{10_4064_sm_128_3_199_218,
     author = {Anna Canale and   and  },
     title = {Functions with derivatives in spaces of {Morrey} type and elliptic equations in unbounded domains},
     journal = {Studia Mathematica},
     pages = {199--218},
     publisher = {mathdoc},
     volume = {128},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-128-3-199-218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-199-218/}
}
TY  - JOUR
AU  - Anna Canale
AU  -  
AU  -  
TI  - Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains
JO  - Studia Mathematica
PY  - 1998
SP  - 199
EP  - 218
VL  - 128
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-199-218/
DO  - 10.4064/sm-128-3-199-218
LA  - en
ID  - 10_4064_sm_128_3_199_218
ER  - 
%0 Journal Article
%A Anna Canale
%A  
%A  
%T Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains
%J Studia Mathematica
%D 1998
%P 199-218
%V 128
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-3-199-218/
%R 10.4064/sm-128-3-199-218
%G en
%F 10_4064_sm_128_3_199_218
Anna Canale;  ;  . Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains. Studia Mathematica, Tome 128 (1998) no. 3, pp. 199-218. doi: 10.4064/sm-128-3-199-218

Cité par Sources :