Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $ℝ^{n}$
Studia Mathematica, Tome 128 (1998) no. 2, pp. 171-198
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study existence, uniqueness, and smoothing properties of the solutions to a class of linear second order elliptic and parabolic differential equations with unbounded coefficients in $ℝ^n$. The main results are global Schauder estimates, which hold in spite of the unboundedness of the coefficients.
@article{10_4064_sm_128_2_171_198,
author = {Alessandra Lunardi},
title = {Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\ensuremath{\mathbb{R}}^{n}$},
journal = {Studia Mathematica},
pages = {171--198},
year = {1998},
volume = {128},
number = {2},
doi = {10.4064/sm-128-2-171-198},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-171-198/}
}
TY - JOUR
AU - Alessandra Lunardi
TI - Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $ℝ^{n}$
JO - Studia Mathematica
PY - 1998
SP - 171
EP - 198
VL - 128
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-171-198/
DO - 10.4064/sm-128-2-171-198
LA - en
ID - 10_4064_sm_128_2_171_198
ER -
%0 Journal Article
%A Alessandra Lunardi
%T Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $ℝ^{n}$
%J Studia Mathematica
%D 1998
%P 171-198
%V 128
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-171-198/
%R 10.4064/sm-128-2-171-198
%G en
%F 10_4064_sm_128_2_171_198
Alessandra Lunardi. Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $ℝ^{n}$. Studia Mathematica, Tome 128 (1998) no. 2, pp. 171-198. doi: 10.4064/sm-128-2-171-198
Cité par Sources :