Commutators of quasinilpotents and invariant subspaces
Studia Mathematica, Tome 128 (1998) no. 2, pp. 159-169

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that the set Q of quasinilpotent elements in a Banach algebra is an ideal, i.e. equal to the Jacobson radical, if (and only if) the condition [Q,Q] ⊆ Q (or a similar condition concerning anticommutators) holds. In fact, if the inner derivation defined by a quasinilpotent element p maps Q into itself then p ∈ Rad A. Higher commutator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra satisfies such a condition, then every quasinilpotent element has some fixed power in the Jacobson radical. These results are applied to topologically transitive representations. As a consequence, it is proved that a closed algebra of polynomially compact operators satisfying a higher commutator condition must have an invariant nest of closed subspaces, with "gaps" of bounded dimension. In particular, if [Q,Q] ⊆ Q, then the algebra must be triangularizable. An example is given showing that this may fail for more general algebras.
DOI : 10.4064/sm-128-2-159-169

A. Katavolos 1

1
@article{10_4064_sm_128_2_159_169,
     author = {A. Katavolos},
     title = {Commutators of quasinilpotents and invariant subspaces},
     journal = {Studia Mathematica},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-128-2-159-169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-159-169/}
}
TY  - JOUR
AU  - A. Katavolos
TI  - Commutators of quasinilpotents and invariant subspaces
JO  - Studia Mathematica
PY  - 1998
SP  - 159
EP  - 169
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-159-169/
DO  - 10.4064/sm-128-2-159-169
LA  - en
ID  - 10_4064_sm_128_2_159_169
ER  - 
%0 Journal Article
%A A. Katavolos
%T Commutators of quasinilpotents and invariant subspaces
%J Studia Mathematica
%D 1998
%P 159-169
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-159-169/
%R 10.4064/sm-128-2-159-169
%G en
%F 10_4064_sm_128_2_159_169
A. Katavolos. Commutators of quasinilpotents and invariant subspaces. Studia Mathematica, Tome 128 (1998) no. 2, pp. 159-169. doi: 10.4064/sm-128-2-159-169

Cité par Sources :