Dominated ergodic theorems in rearrangement invariant spaces
Studia Mathematica, Tome 128 (1998) no. 2, pp. 145-157

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces $L_p$ and the classes $L log^nL$.
DOI : 10.4064/sm-128-2-145-157
Keywords: rearrangement invariant space, ergodic theorem, Hardy-Littlewood property

Michael Braverman 1 ;  1

1
@article{10_4064_sm_128_2_145_157,
     author = {Michael Braverman and  },
     title = {Dominated ergodic theorems in rearrangement invariant spaces},
     journal = {Studia Mathematica},
     pages = {145--157},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-128-2-145-157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-145-157/}
}
TY  - JOUR
AU  - Michael Braverman
AU  -  
TI  - Dominated ergodic theorems in rearrangement invariant spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 145
EP  - 157
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-145-157/
DO  - 10.4064/sm-128-2-145-157
LA  - en
ID  - 10_4064_sm_128_2_145_157
ER  - 
%0 Journal Article
%A Michael Braverman
%A  
%T Dominated ergodic theorems in rearrangement invariant spaces
%J Studia Mathematica
%D 1998
%P 145-157
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-145-157/
%R 10.4064/sm-128-2-145-157
%G en
%F 10_4064_sm_128_2_145_157
Michael Braverman;  . Dominated ergodic theorems in rearrangement invariant spaces. Studia Mathematica, Tome 128 (1998) no. 2, pp. 145-157. doi: 10.4064/sm-128-2-145-157

Cité par Sources :