Dominated ergodic theorems in rearrangement invariant spaces
Studia Mathematica, Tome 128 (1998) no. 2, pp. 145-157
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces $L_p$ and the classes $L log^nL$.
Keywords:
rearrangement invariant space, ergodic theorem, Hardy-Littlewood property
Affiliations des auteurs :
Michael Braverman 1 ;  1
@article{10_4064_sm_128_2_145_157,
author = {Michael Braverman and },
title = {Dominated ergodic theorems in rearrangement invariant spaces},
journal = {Studia Mathematica},
pages = {145--157},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {1998},
doi = {10.4064/sm-128-2-145-157},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-145-157/}
}
TY - JOUR AU - Michael Braverman AU - TI - Dominated ergodic theorems in rearrangement invariant spaces JO - Studia Mathematica PY - 1998 SP - 145 EP - 157 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-145-157/ DO - 10.4064/sm-128-2-145-157 LA - en ID - 10_4064_sm_128_2_145_157 ER -
Michael Braverman; . Dominated ergodic theorems in rearrangement invariant spaces. Studia Mathematica, Tome 128 (1998) no. 2, pp. 145-157. doi: 10.4064/sm-128-2-145-157
Cité par Sources :