Sur les isométries partielles maximales essentielles
Studia Mathematica, Tome 128 (1998) no. 2, pp. 135-144

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the problem of approximation by the sets S + K(H), $S_e$, V + K(H) and $V_e$ where H is a separable complex Hilbert space, K(H) is the ideal of compact operators, $S = {L ∈ B(H) : L*L = I}$ is the set of isometries, V = S ∪ S* is the set of maximal partial isometries, $S_e = {L ∈ B(H): π(L*)π( L) = π(I)}$ and $V_e = S_e ∪ S_e*$ where π : B(H) → B(H)/K(H) denotes the canonical projection. We also prove that all the relevant distances are attained. This implies that all these classes are closed and we remark that $V_e = V + K(H)$. We also show that S + K(H) is both closed and open in $S_e$. Finally, we prove that $V_e$, S + K(H) and $S_e$ coincide with their boundaries $∂(V_e)$, ∂(S + K(H)) and $∂(S_e)$ respectively.
DOI : 10.4064/sm-128-2-135-144

Haïkel Skhiri 1

1
@article{10_4064_sm_128_2_135_144,
     author = {Ha{\"\i}kel Skhiri},
     title = {Sur les isom\'etries partielles maximales essentielles},
     journal = {Studia Mathematica},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-128-2-135-144},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-135-144/}
}
TY  - JOUR
AU  - Haïkel Skhiri
TI  - Sur les isométries partielles maximales essentielles
JO  - Studia Mathematica
PY  - 1998
SP  - 135
EP  - 144
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-135-144/
DO  - 10.4064/sm-128-2-135-144
LA  - fr
ID  - 10_4064_sm_128_2_135_144
ER  - 
%0 Journal Article
%A Haïkel Skhiri
%T Sur les isométries partielles maximales essentielles
%J Studia Mathematica
%D 1998
%P 135-144
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-135-144/
%R 10.4064/sm-128-2-135-144
%G fr
%F 10_4064_sm_128_2_135_144
Haïkel Skhiri. Sur les isométries partielles maximales essentielles. Studia Mathematica, Tome 128 (1998) no. 2, pp. 135-144. doi: 10.4064/sm-128-2-135-144

Cité par Sources :