Sur les isométries partielles maximales essentielles
Studia Mathematica, Tome 128 (1998) no. 2, pp. 135-144
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the problem of approximation by the sets S + K(H), $S_e$, V + K(H) and $V_e$ where H is a separable complex Hilbert space, K(H) is the ideal of compact operators, $S = {L ∈ B(H) : L*L = I}$ is the set of isometries, V = S ∪ S* is the set of maximal partial isometries, $S_e = {L ∈ B(H): π(L*)π( L) = π(I)}$ and $V_e = S_e ∪ S_e*$ where π : B(H) → B(H)/K(H) denotes the canonical projection. We also prove that all the relevant distances are attained. This implies that all these classes are closed and we remark that $V_e = V + K(H)$. We also show that S + K(H) is both closed and open in $S_e$. Finally, we prove that $V_e$, S + K(H) and $S_e$ coincide with their boundaries $∂(V_e)$, ∂(S + K(H)) and $∂(S_e)$ respectively.
@article{10_4064_sm_128_2_135_144,
author = {Ha{\"\i}kel Skhiri},
title = {Sur les isom\'etries partielles maximales essentielles},
journal = {Studia Mathematica},
pages = {135--144},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {1998},
doi = {10.4064/sm-128-2-135-144},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-135-144/}
}
TY - JOUR AU - Haïkel Skhiri TI - Sur les isométries partielles maximales essentielles JO - Studia Mathematica PY - 1998 SP - 135 EP - 144 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-135-144/ DO - 10.4064/sm-128-2-135-144 LA - fr ID - 10_4064_sm_128_2_135_144 ER -
Haïkel Skhiri. Sur les isométries partielles maximales essentielles. Studia Mathematica, Tome 128 (1998) no. 2, pp. 135-144. doi: 10.4064/sm-128-2-135-144
Cité par Sources :