Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$
Studia Mathematica, Tome 128 (1998) no. 2, pp. 103-120

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The possibilities of almost sure approximation of unbounded operators in $L_2(X,A,μ)$ by multiples of projections or unitary operators are examined.
DOI : 10.4064/sm-128-2-103-120
Keywords: $L_2(X, A, μ)$, unbounded operators, almost sure convergence, projections, unitary operators, approximation

Ryszard Jajte 1

1
@article{10_4064_sm_128_2_103_120,
     author = {Ryszard Jajte},
     title = {Almost sure approximation of unbounded operators in $L_2 (X,A,\ensuremath{\mu})$},
     journal = {Studia Mathematica},
     pages = {103--120},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-128-2-103-120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-103-120/}
}
TY  - JOUR
AU  - Ryszard Jajte
TI  - Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$
JO  - Studia Mathematica
PY  - 1998
SP  - 103
EP  - 120
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-103-120/
DO  - 10.4064/sm-128-2-103-120
LA  - en
ID  - 10_4064_sm_128_2_103_120
ER  - 
%0 Journal Article
%A Ryszard Jajte
%T Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$
%J Studia Mathematica
%D 1998
%P 103-120
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-103-120/
%R 10.4064/sm-128-2-103-120
%G en
%F 10_4064_sm_128_2_103_120
Ryszard Jajte. Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$. Studia Mathematica, Tome 128 (1998) no. 2, pp. 103-120. doi: 10.4064/sm-128-2-103-120

Cité par Sources :