Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$
Studia Mathematica, Tome 128 (1998) no. 2, pp. 103-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The possibilities of almost sure approximation of unbounded operators in $L_2(X,A,μ)$ by multiples of projections or unitary operators are examined.
Keywords:
$L_2(X, A, μ)$, unbounded operators, almost sure convergence, projections, unitary operators, approximation
Affiliations des auteurs :
Ryszard Jajte 1
@article{10_4064_sm_128_2_103_120,
author = {Ryszard Jajte},
title = {Almost sure approximation of unbounded operators in $L_2 (X,A,\ensuremath{\mu})$},
journal = {Studia Mathematica},
pages = {103--120},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {1998},
doi = {10.4064/sm-128-2-103-120},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-103-120/}
}
TY - JOUR AU - Ryszard Jajte TI - Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$ JO - Studia Mathematica PY - 1998 SP - 103 EP - 120 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-2-103-120/ DO - 10.4064/sm-128-2-103-120 LA - en ID - 10_4064_sm_128_2_103_120 ER -
Ryszard Jajte. Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$. Studia Mathematica, Tome 128 (1998) no. 2, pp. 103-120. doi: 10.4064/sm-128-2-103-120
Cité par Sources :