Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces
Studia Mathematica, Tome 128 (1998) no. 1, pp. 71-102

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let id be the natural embedding of the Sobolev space $W_p^l(Ω)$ in the Zygmund space $L_q(log L)_a(Ω)$, where $Ω = (0,1)^n$, 1 p ∞, l ∈ ℕ, 1/p = 1/q + l/n and a 0, a ≠ -l/n. We consider the entropy numbers $e_k(id)$ of this embedding and show that $e_k(id) ≍ k^{-η}$, where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.
DOI : 10.4064/sm-128-1-71-102

D. E. Edmunds 1

1
@article{10_4064_sm_128_1_71_102,
     author = {D. E. Edmunds},
     title = {Entropy numbers of embeddings of {Sobolev} spaces in {Zygmund} spaces},
     journal = {Studia Mathematica},
     pages = {71--102},
     publisher = {mathdoc},
     volume = {128},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-128-1-71-102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-71-102/}
}
TY  - JOUR
AU  - D. E. Edmunds
TI  - Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 71
EP  - 102
VL  - 128
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-71-102/
DO  - 10.4064/sm-128-1-71-102
LA  - en
ID  - 10_4064_sm_128_1_71_102
ER  - 
%0 Journal Article
%A D. E. Edmunds
%T Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces
%J Studia Mathematica
%D 1998
%P 71-102
%V 128
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-71-102/
%R 10.4064/sm-128-1-71-102
%G en
%F 10_4064_sm_128_1_71_102
D. E. Edmunds. Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces. Studia Mathematica, Tome 128 (1998) no. 1, pp. 71-102. doi: 10.4064/sm-128-1-71-102

Cité par Sources :