Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces
Studia Mathematica, Tome 128 (1998) no. 1, pp. 71-102
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let id be the natural embedding of the Sobolev space $W_p^l(Ω)$ in the Zygmund space $L_q(log L)_a(Ω)$, where $Ω = (0,1)^n$, 1 p ∞, l ∈ ℕ, 1/p = 1/q + l/n and a 0, a ≠ -l/n. We consider the entropy numbers $e_k(id)$ of this embedding and show that $e_k(id) ≍ k^{-η}$, where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.
@article{10_4064_sm_128_1_71_102,
author = {D. E. Edmunds},
title = {Entropy numbers of embeddings of {Sobolev} spaces in {Zygmund} spaces},
journal = {Studia Mathematica},
pages = {71--102},
publisher = {mathdoc},
volume = {128},
number = {1},
year = {1998},
doi = {10.4064/sm-128-1-71-102},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-71-102/}
}
TY - JOUR AU - D. E. Edmunds TI - Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces JO - Studia Mathematica PY - 1998 SP - 71 EP - 102 VL - 128 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-71-102/ DO - 10.4064/sm-128-1-71-102 LA - en ID - 10_4064_sm_128_1_71_102 ER -
D. E. Edmunds. Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces. Studia Mathematica, Tome 128 (1998) no. 1, pp. 71-102. doi: 10.4064/sm-128-1-71-102
Cité par Sources :