Tauberian theorems for vector-valued Fourier and Laplace transforms
Studia Mathematica, Tome 128 (1998) no. 1, pp. 55-69

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a Banach space and $f ∈ L^1_loc(ℝ;X)$ be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.
DOI : 10.4064/sm-128-1-55-69
Keywords: Tauberian theorem, Fourier transform, Laplace transform, asymptotically almost periodic, analytic Radon-Nikodym property, Cauchy problem

Ralph Chill 1

1
@article{10_4064_sm_128_1_55_69,
     author = {Ralph Chill},
     title = {Tauberian theorems for vector-valued {Fourier} and {Laplace} transforms},
     journal = {Studia Mathematica},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {128},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-128-1-55-69},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-55-69/}
}
TY  - JOUR
AU  - Ralph Chill
TI  - Tauberian theorems for vector-valued Fourier and Laplace transforms
JO  - Studia Mathematica
PY  - 1998
SP  - 55
EP  - 69
VL  - 128
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-55-69/
DO  - 10.4064/sm-128-1-55-69
LA  - en
ID  - 10_4064_sm_128_1_55_69
ER  - 
%0 Journal Article
%A Ralph Chill
%T Tauberian theorems for vector-valued Fourier and Laplace transforms
%J Studia Mathematica
%D 1998
%P 55-69
%V 128
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-55-69/
%R 10.4064/sm-128-1-55-69
%G en
%F 10_4064_sm_128_1_55_69
Ralph Chill. Tauberian theorems for vector-valued Fourier and Laplace transforms. Studia Mathematica, Tome 128 (1998) no. 1, pp. 55-69. doi: 10.4064/sm-128-1-55-69

Cité par Sources :